Ordinary Least Squares
========================


.. _ols_notebook:

`Link to Notebook GitHub <https://github.com/statsmodels/statsmodels/blob/master/examples/notebooks/ols.ipynb>`_

.. raw:: html

   
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">print_function</span>
   <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
   <span class="kn">import</span> <span class="nn">statsmodels.api</span> <span class="k">as</span> <span class="nn">sm</span>
   <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
   <span class="kn">from</span> <span class="nn">statsmodels.sandbox.regression.predstd</span> <span class="k">import</span> <span class="n">wls_prediction_std</span>
   
   <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">9876789</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h2 id="OLS-estimation">OLS estimation<a class="anchor-link" href="#OLS-estimation">&#182;</a></h2><p>Artificial data:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">nsample</span> <span class="o">=</span> <span class="mi">100</span>
   <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">column_stack</span><span class="p">((</span><span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span><span class="p">))</span>
   <span class="n">beta</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mi">10</span><span class="p">])</span>
   <span class="n">e</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">nsample</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Our model needs an intercept so we add a column of 1s:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">X</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
   <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span> <span class="o">+</span> <span class="n">e</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Fit and summary:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">model</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span>
   <span class="n">results</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">results</span><span class="o">.</span><span class="n">summary</span><span class="p">())</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Quantities of interest can be extracted directly from the fitted model. Type <code>dir(results)</code> for a full list. Here are some examples:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="s">&#39;Parameters: &#39;</span><span class="p">,</span> <span class="n">results</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="s">&#39;R2: &#39;</span><span class="p">,</span> <span class="n">results</span><span class="o">.</span><span class="n">rsquared</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                      y   R-squared:                       1.000
   Model:                            OLS   Adj. R-squared:                  1.000
   Method:                 Least Squares   F-statistic:                 4.020e+06
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):          2.83e-239
   Time:                        17:44:10   Log-Likelihood:                -146.51
   No. Observations:                 100   AIC:                             299.0
   Df Residuals:                      97   BIC:                             306.8
   Df Model:                           2                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P&gt;|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   const          1.3423      0.313      4.292      0.000         0.722     1.963
   x1            -0.0402      0.145     -0.278      0.781        -0.327     0.247
   x2            10.0103      0.014    715.745      0.000         9.982    10.038
   ==============================================================================
   Omnibus:                        2.042   Durbin-Watson:                   2.274
   Prob(Omnibus):                  0.360   Jarque-Bera (JB):                1.875
   Skew:                           0.234   Prob(JB):                        0.392
   Kurtosis:                       2.519   Cond. No.                         144.
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h2 id="OLS-non-linear-curve-but-linear-in-parameters">OLS non-linear curve but linear in parameters<a class="anchor-link" href="#OLS-non-linear-curve-but-linear-in-parameters">&#182;</a></h2><p>We simulate artificial data with a non-linear relationship between x and y:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">nsample</span> <span class="o">=</span> <span class="mi">50</span>
   <span class="n">sig</span> <span class="o">=</span> <span class="mf">0.5</span>
   <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="n">nsample</span><span class="p">)</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">column_stack</span><span class="p">((</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="mi">5</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">nsample</span><span class="p">)))</span>
   <span class="n">beta</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.02</span><span class="p">,</span> <span class="mf">5.</span><span class="p">]</span>
   
   <span class="n">y_true</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span>
   <span class="n">y</span> <span class="o">=</span> <span class="n">y_true</span> <span class="o">+</span> <span class="n">sig</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">nsample</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>Parameters:  [  1.34233516  -0.04024948  10.01025357]
   R2:  0.999987936503
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Fit and summary:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">res</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">summary</span><span class="p">())</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Extract other quantities of interest:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="s">&#39;Parameters: &#39;</span><span class="p">,</span> <span class="n">res</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="s">&#39;Standard errors: &#39;</span><span class="p">,</span> <span class="n">res</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="s">&#39;Predicted values: &#39;</span><span class="p">,</span> <span class="n">res</span><span class="o">.</span><span class="n">predict</span><span class="p">())</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                      y   R-squared:                       0.933
   Model:                            OLS   Adj. R-squared:                  0.928
   Method:                 Least Squares   F-statistic:                     211.8
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):           6.30e-27
   Time:                        17:44:10   Log-Likelihood:                -34.438
   No. Observations:                  50   AIC:                             76.88
   Df Residuals:                      46   BIC:                             84.52
   Df Model:                           3                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P&gt;|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   x1             0.4687      0.026     17.751      0.000         0.416     0.522
   x2             0.4836      0.104      4.659      0.000         0.275     0.693
   x3            -0.0174      0.002     -7.507      0.000        -0.022    -0.013
   const          5.2058      0.171     30.405      0.000         4.861     5.550
   ==============================================================================
   Omnibus:                        0.655   Durbin-Watson:                   2.896
   Prob(Omnibus):                  0.721   Jarque-Bera (JB):                0.360
   Skew:                           0.207   Prob(JB):                        0.835
   Kurtosis:                       3.026   Cond. No.                         221.
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Draw a plot to compare the true relationship to OLS predictions. Confidence intervals around the predictions are built using the <code>wls_prediction_std</code> command.</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">prstd</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="n">iv_u</span> <span class="o">=</span> <span class="n">wls_prediction_std</span><span class="p">(</span><span class="n">res</span><span class="p">)</span>
   
   <span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span>
   
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="s">&#39;o&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;data&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y_true</span><span class="p">,</span> <span class="s">&#39;b-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;True&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">res</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">&#39;r--.&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;OLS&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">iv_u</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">);</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>Parameters:  [ 0.46872448  0.48360119 -0.01740479  5.20584496]
   Standard errors:  [ 0.02640602  0.10380518  0.00231847  0.17121765]
   Predicted values:  [  4.77072516   5.22213464   5.63620761   5.98658823   6.25643234
      6.44117491   6.54928009   6.60085051   6.62432454   6.6518039
      6.71377946   6.83412169   7.02615877   7.29048685   7.61487206
      7.97626054   8.34456611   8.68761335   8.97642389   9.18997755
      9.31866582   9.36587056   9.34740836   9.28893189   9.22171529
      9.17751587   9.1833565    9.25708583   9.40444579   9.61812821
      9.87897556  10.15912843  10.42660281  10.65054491  10.8063004
     10.87946503  10.86825119  10.78378163  10.64826203  10.49133265
     10.34519853  10.23933827  10.19566084  10.22490593  10.32487947
     10.48081414  10.66779556  10.85485568  11.01006072  11.10575781]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h2 id="OLS-with-dummy-variables">OLS with dummy variables<a class="anchor-link" href="#OLS-with-dummy-variables">&#182;</a></h2><p>We generate some artificial data. There are 3 groups which will be modelled using dummy variables. Group 0 is the omitted/benchmark category.</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">nsample</span> <span class="o">=</span> <span class="mi">50</span>
   <span class="n">groups</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">nsample</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span>
   <span class="n">groups</span><span class="p">[</span><span class="mi">20</span><span class="p">:</span><span class="mi">40</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
   <span class="n">groups</span><span class="p">[</span><span class="mi">40</span><span class="p">:]</span> <span class="o">=</span> <span class="mi">2</span>
   <span class="c">#dummy = (groups[:,None] == np.unique(groups)).astype(float)</span>
   
   <span class="n">dummy</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">categorical</span><span class="p">(</span><span class="n">groups</span><span class="p">,</span> <span class="n">drop</span><span class="o">=</span><span class="k">True</span><span class="p">)</span>
   <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="n">nsample</span><span class="p">)</span>
   <span class="c"># drop reference category</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">column_stack</span><span class="p">((</span><span class="n">x</span><span class="p">,</span> <span class="n">dummy</span><span class="p">[:,</span><span class="mi">1</span><span class="p">:]))</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">prepend</span><span class="o">=</span><span class="k">False</span><span class="p">)</span>
   
   <span class="n">beta</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="mi">10</span><span class="p">]</span>
   <span class="n">y_true</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span>
   <span class="n">e</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">nsample</span><span class="p">)</span>
   <span class="n">y</span> <span class="o">=</span> <span class="n">y_true</span> <span class="o">+</span> <span class="n">e</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   
   
   
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Inspect the data:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">5</span><span class="p">,:])</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">y</span><span class="p">[:</span><span class="mi">5</span><span class="p">])</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">groups</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">dummy</span><span class="p">[:</span><span class="mi">5</span><span class="p">,:])</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Fit and summary:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">res2</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">summary</span><span class="p">())</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[[ 0.          0.          0.          1.        ]
    [ 0.40816327  0.          0.          1.        ]
    [ 0.81632653  0.          0.          1.        ]
    [ 1.2244898   0.          0.          1.        ]
    [ 1.63265306  0.          0.          1.        ]]
   [  9.28223335  10.50481865  11.84389206  10.38508408  12.37941998]
   [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
    1 1 1 2 2 2 2 2 2 2 2 2 2]
   [[ 1.  0.  0.]
    [ 1.  0.  0.]
    [ 1.  0.  0.]
    [ 1.  0.  0.]
    [ 1.  0.  0.]]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Draw a plot to compare the true relationship to OLS predictions:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">prstd</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="n">iv_u</span> <span class="o">=</span> <span class="n">wls_prediction_std</span><span class="p">(</span><span class="n">res2</span><span class="p">)</span>
   
   <span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span>
   
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="s">&#39;o&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;Data&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y_true</span><span class="p">,</span> <span class="s">&#39;b-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;True&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">res2</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">&#39;r--.&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;Predicted&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">iv_u</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">legend</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&quot;best&quot;</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                      y   R-squared:                       0.933
   Model:                            OLS   Adj. R-squared:                  0.928
   Method:                 Least Squares   F-statistic:                     211.8
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):           6.30e-27
   Time:                        17:44:10   Log-Likelihood:                -34.438
   No. Observations:                  50   AIC:                             76.88
   Df Residuals:                      46   BIC:                             84.52
   Df Model:                           3                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P&gt;|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   x1             0.4687      0.026     17.751      0.000         0.416     0.522
   x2             0.4836      0.104      4.659      0.000         0.275     0.693
   x3            -0.0174      0.002     -7.507      0.000        -0.022    -0.013
   const          5.2058      0.171     30.405      0.000         4.861     5.550
   ==============================================================================
   Omnibus:                        0.655   Durbin-Watson:                   2.896
   Prob(Omnibus):                  0.721   Jarque-Bera (JB):                0.360
   Skew:                           0.207   Prob(JB):                        0.835
   Kurtosis:                       3.026   Cond. No.                         221.
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h2 id="Joint-hypothesis-test">Joint hypothesis test<a class="anchor-link" href="#Joint-hypothesis-test">&#182;</a></h2><h3 id="F-test">F test<a class="anchor-link" href="#F-test">&#182;</a></h3><p>We want to test the hypothesis that both coefficients on the dummy variables are equal to zero, that is, $R \times \beta = 0$. An F test leads us to strongly reject the null hypothesis of identical constant in the 3 groups:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">R</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]]</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">R</span><span class="p">))</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res2</span><span class="o">.</span><span class="n">f_test</span><span class="p">(</span><span class="n">R</span><span class="p">))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   
   
   
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>You can also use formula-like syntax to test hypotheses</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="n">res2</span><span class="o">.</span><span class="n">f_test</span><span class="p">(</span><span class="s">&quot;x2 = x3 = 0&quot;</span><span class="p">))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[[0 1 0 0]
    [0 0 1 0]]
   &lt;F test: F=array([[ 145.49268198]]), p=1.2834419617281833e-20, df_denom=46, df_num=2&gt;
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h3 id="Small-group-effects">Small group effects<a class="anchor-link" href="#Small-group-effects">&#182;</a></h3><p>If we generate artificial data with smaller group effects, the T test can no longer reject the Null hypothesis:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">beta</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0</span><span class="p">,</span> <span class="mi">10</span><span class="p">]</span>
   <span class="n">y_true</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span>
   <span class="n">y</span> <span class="o">=</span> <span class="n">y_true</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">nsample</span><span class="p">)</span>
   
   <span class="n">res3</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>&lt;F test: F=array([[ 145.49268198]]), p=1.2834419617282074e-20, df_denom=46, df_num=2&gt;
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="n">res3</span><span class="o">.</span><span class="n">f_test</span><span class="p">(</span><span class="n">R</span><span class="p">))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="n">res3</span><span class="o">.</span><span class="n">f_test</span><span class="p">(</span><span class="s">&quot;x2 = x3 = 0&quot;</span><span class="p">))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>&lt;F test: F=array([[ 1.22491119]]), p=0.30318644106311987, df_denom=46, df_num=2&gt;
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h3 id="Multicollinearity">Multicollinearity<a class="anchor-link" href="#Multicollinearity">&#182;</a></h3><p>The Longley dataset is well known to have high multicollinearity. That is, the exogenous predictors are highly correlated. This is problematic because it can affect the stability of our coefficient estimates as we make minor changes to model specification.</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">statsmodels.datasets.longley</span> <span class="k">import</span> <span class="n">load_pandas</span>
   <span class="n">y</span> <span class="o">=</span> <span class="n">load_pandas</span><span class="p">()</span><span class="o">.</span><span class="n">endog</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">load_pandas</span><span class="p">()</span><span class="o">.</span><span class="n">exog</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>&lt;F test: F=array([[ 1.22491119]]), p=0.30318644106311987, df_denom=46, df_num=2&gt;
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Fit and summary:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">ols_model</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span>
   <span class="n">ols_results</span> <span class="o">=</span> <span class="n">ols_model</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">ols_results</span><span class="o">.</span><span class="n">summary</span><span class="p">())</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h4 id="Condition-number">Condition number<a class="anchor-link" href="#Condition-number">&#182;</a></h4><p>One way to assess multicollinearity is to compute the condition number. Values over 20 are worrisome (see Greene 4.9). The first step is to normalize the independent variables to have unit length:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">norm_x</span> <span class="o">=</span> <span class="n">X</span><span class="o">.</span><span class="n">values</span>
   <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">X</span><span class="p">):</span>
       <span class="k">if</span> <span class="n">name</span> <span class="o">==</span> <span class="s">&quot;const&quot;</span><span class="p">:</span>
           <span class="k">continue</span>
       <span class="n">norm_x</span><span class="p">[:,</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">X</span><span class="p">[</span><span class="n">name</span><span class="p">])</span>
   <span class="n">norm_xtx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">norm_x</span><span class="o">.</span><span class="n">T</span><span class="p">,</span><span class="n">norm_x</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                 TOTEMP   R-squared:                       0.995
   Model:                            OLS   Adj. R-squared:                  0.992
   Method:                 Least Squares   F-statistic:                     330.3
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):           4.98e-10
   Time:                        17:44:10   Log-Likelihood:                -109.62
   No. Observations:                  16   AIC:                             233.2
   Df Residuals:                       9   BIC:                             238.6
   Df Model:                           6                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P&gt;|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   const      -3.482e+06    8.9e+05     -3.911      0.004      -5.5e+06 -1.47e+06
   GNPDEFL       15.0619     84.915      0.177      0.863      -177.029   207.153
   GNP           -0.0358      0.033     -1.070      0.313        -0.112     0.040
   UNEMP         -2.0202      0.488     -4.136      0.003        -3.125    -0.915
   ARMED         -1.0332      0.214     -4.822      0.001        -1.518    -0.549
   POP           -0.0511      0.226     -0.226      0.826        -0.563     0.460
   YEAR        1829.1515    455.478      4.016      0.003       798.788  2859.515
   ==============================================================================
   Omnibus:                        0.749   Durbin-Watson:                   2.559
   Prob(Omnibus):                  0.688   Jarque-Bera (JB):                0.684
   Skew:                           0.420   Prob(JB):                        0.710
   Kurtosis:                       2.434   Cond. No.                     4.86e+09
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   [2] The condition number is large, 4.86e+09. This might indicate that there are
   strong multicollinearity or other numerical problems.
   </pre>
   </div>
   </div>
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stderr output_text">
   <pre>/Users/tom.augspurger/Envs/py3/lib/python3.4/site-packages/scipy/stats/stats.py:1233: UserWarning: kurtosistest only valid for n&gt;=20 ... continuing anyway, n=16
     int(n))
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Then, we take the square root of the ratio of the biggest to the smallest eigen values.</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">eigs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">eigvals</span><span class="p">(</span><span class="n">norm_xtx</span><span class="p">)</span>
   <span class="n">condition_number</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">eigs</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">/</span> <span class="n">eigs</span><span class="o">.</span><span class="n">min</span><span class="p">())</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">condition_number</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h4 id="Dropping-an-observation">Dropping an observation<a class="anchor-link" href="#Dropping-an-observation">&#182;</a></h4><p>Greene also points out that dropping a single observation can have a dramatic effect on the coefficient estimates:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">ols_results2</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">ix</span><span class="p">[:</span><span class="mi">14</span><span class="p">],</span> <span class="n">X</span><span class="o">.</span><span class="n">ix</span><span class="p">[:</span><span class="mi">14</span><span class="p">])</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="s">&quot;Percentage change %4.2f%%</span><span class="se">\n</span><span class="s">&quot;</span><span class="o">*</span><span class="mi">7</span> <span class="o">%</span> <span class="nb">tuple</span><span class="p">([</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="p">(</span><span class="n">ols_results2</span><span class="o">.</span><span class="n">params</span> <span class="o">-</span> <span class="n">ols_results</span><span class="o">.</span><span class="n">params</span><span class="p">)</span><span class="o">/</span><span class="n">ols_results</span><span class="o">.</span><span class="n">params</span><span class="o">*</span><span class="mi">100</span><span class="p">]))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>56240.8707446
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>We can also look at formal statistics for this such as the DFBETAS -- a standardized measure of how much each coefficient changes when that observation is left out.</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">infl</span> <span class="o">=</span> <span class="n">ols_results</span><span class="o">.</span><span class="n">get_influence</span><span class="p">()</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>Percentage change -13.35%
   Percentage change -236.18%
   Percentage change -23.69%
   Percentage change -3.36%
   Percentage change -7.26%
   Percentage change -200.46%
   Percentage change -13.34%
   
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>In general we may consider DBETAS in absolute value greater than $2/\sqrt{N}$ to be influential observations</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="mf">2.</span><span class="o">/</span><span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="o">**.</span><span class="mi">5</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="nb">print</span><span class="p">(</span><span class="n">infl</span><span class="o">.</span><span class="n">summary_frame</span><span class="p">()</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">regex</span><span class="o">=</span><span class="s">&quot;dfb&quot;</span><span class="p">))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   
   </div>
   
   </div>
   </div>
   
   </div>

   <script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"type="text/javascript"></script>
   <script type="text/javascript">
   init_mathjax = function() {
       if (window.MathJax) {
           // MathJax loaded
           MathJax.Hub.Config({
               tex2jax: {
               // I'm not sure about the \( and \[ below. It messes with the
               // prompt, and I think it's an issue with the template. -SS
                   inlineMath: [ ['$','$'], ["\\(","\\)"] ],
                   displayMath: [ ['$$','$$'], ["\\[","\\]"] ]
               },
               displayAlign: 'left', // Change this to 'center' to center equations.
               "HTML-CSS": {
                   styles: {'.MathJax_Display': {"margin": 0}}
               }
           });
           MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
       }
   }
   init_mathjax();

   // since we have to load this in a ..raw:: directive we will add the css
   // after the fact
   function loadcssfile(filename){
       var fileref=document.createElement("link")
       fileref.setAttribute("rel", "stylesheet")
       fileref.setAttribute("type", "text/css")
       fileref.setAttribute("href", filename)

       document.getElementsByTagName("head")[0].appendChild(fileref)
   }
   // loadcssfile({{pathto("_static/nbviewer.pygments.css", 1) }})
   // loadcssfile({{pathto("_static/nbviewer.min.css", 1) }})
   loadcssfile("../../../_static/nbviewer.pygments.css")
   loadcssfile("../../../_static/ipython.min.css")
   </script>