Robust Linear Models ====================== .. _robust_models_0_notebook: `Link to Notebook GitHub <https://github.com/statsmodels/statsmodels/blob/master/examples/notebooks/robust_models_0.ipynb>`_ .. raw:: html <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">print_function</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">statsmodels.api</span> <span class="k">as</span> <span class="nn">sm</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">from</span> <span class="nn">statsmodels.sandbox.regression.predstd</span> <span class="k">import</span> <span class="n">wls_prediction_std</span> </pre></div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <h2 id="Estimation">Estimation<a class="anchor-link" href="#Estimation">¶</a></h2><p>Load data:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">data</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">stackloss</span><span class="o">.</span><span class="n">load</span><span class="p">()</span> <span class="n">data</span><span class="o">.</span><span class="n">exog</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">exog</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Huber's T norm with the (default) median absolute deviation scaling</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">huber_t</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">endog</span><span class="p">,</span> <span class="n">data</span><span class="o">.</span><span class="n">exog</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="n">sm</span><span class="o">.</span><span class="n">robust</span><span class="o">.</span><span class="n">norms</span><span class="o">.</span><span class="n">HuberT</span><span class="p">())</span> <span class="n">hub_results</span> <span class="o">=</span> <span class="n">huber_t</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="nb">print</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">summary</span><span class="p">(</span><span class="n">yname</span><span class="o">=</span><span class="s">'y'</span><span class="p">,</span> <span class="n">xname</span><span class="o">=</span><span class="p">[</span><span class="s">'var_%d'</span> <span class="o">%</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">params</span><span class="p">))]))</span> </pre></div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Huber's T norm with 'H2' covariance matrix</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">hub_results2</span> <span class="o">=</span> <span class="n">huber_t</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">cov</span><span class="o">=</span><span class="s">"H2"</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">hub_results2</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">hub_results2</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>[-41.02649835 0.82938433 0.92606597 -0.12784672] [ 9.79189854 0.11100521 0.30293016 0.12864961] Robust linear Model Regression Results ============================================================================== Dep. Variable: y No. Observations: 21 Model: RLM Df Residuals: 17 Method: IRLS Df Model: 3 Norm: HuberT Scale Est.: mad Cov Type: H1 Date: Mon, 20 Jul 2015 Time: 17:44:35 No. Iterations: 19 ============================================================================== coef std err z P>|z| [95.0% Conf. Int.] ------------------------------------------------------------------------------ var_0 -41.0265 9.792 -4.190 0.000 -60.218 -21.835 var_1 0.8294 0.111 7.472 0.000 0.612 1.047 var_2 0.9261 0.303 3.057 0.002 0.332 1.520 var_3 -0.1278 0.129 -0.994 0.320 -0.380 0.124 ============================================================================== If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore . </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Andrew's Wave norm with Huber's Proposal 2 scaling and 'H3' covariance matrix</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">andrew_mod</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">endog</span><span class="p">,</span> <span class="n">data</span><span class="o">.</span><span class="n">exog</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="n">sm</span><span class="o">.</span><span class="n">robust</span><span class="o">.</span><span class="n">norms</span><span class="o">.</span><span class="n">AndrewWave</span><span class="p">())</span> <span class="n">andrew_results</span> <span class="o">=</span> <span class="n">andrew_mod</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">scale_est</span><span class="o">=</span><span class="n">sm</span><span class="o">.</span><span class="n">robust</span><span class="o">.</span><span class="n">scale</span><span class="o">.</span><span class="n">HuberScale</span><span class="p">(),</span> <span class="n">cov</span><span class="o">=</span><span class="s">"H3"</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s">'Parameters: '</span><span class="p">,</span> <span class="n">andrew_results</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>[-41.02649835 0.82938433 0.92606597 -0.12784672] [ 9.08950419 0.11945975 0.32235497 0.11796313] </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>See <code>help(sm.RLM.fit)</code> for more options and <code>module sm.robust.scale</code> for scale options</p> <h2 id="Comparing-OLS-and-RLM">Comparing OLS and RLM<a class="anchor-link" href="#Comparing-OLS-and-RLM">¶</a></h2><p>Artificial data with outliers:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">nsample</span> <span class="o">=</span> <span class="mi">50</span> <span class="n">x1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="n">nsample</span><span class="p">)</span> <span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">column_stack</span><span class="p">((</span><span class="n">x1</span><span class="p">,</span> <span class="p">(</span><span class="n">x1</span><span class="o">-</span><span class="mi">5</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">))</span> <span class="n">X</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="n">sig</span> <span class="o">=</span> <span class="mf">0.3</span> <span class="c"># smaller error variance makes OLS<->RLM contrast bigger</span> <span class="n">beta</span> <span class="o">=</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0</span><span class="p">]</span> <span class="n">y_true2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span> <span class="n">y2</span> <span class="o">=</span> <span class="n">y_true2</span> <span class="o">+</span> <span class="n">sig</span><span class="o">*</span><span class="mf">1.</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">nsample</span><span class="p">)</span> <span class="n">y2</span><span class="p">[[</span><span class="mi">39</span><span class="p">,</span><span class="mi">41</span><span class="p">,</span><span class="mi">43</span><span class="p">,</span><span class="mi">45</span><span class="p">,</span><span class="mi">48</span><span class="p">]]</span> <span class="o">-=</span> <span class="mi">5</span> <span class="c"># add some outliers (10% of nsample)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>Parameters: [-40.8817957 0.79276138 1.04857556 -0.13360865] </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <h3 id="Example-1:-quadratic-function-with-linear-truth">Example 1: quadratic function with linear truth<a class="anchor-link" href="#Example-1:-quadratic-function-with-linear-truth">¶</a></h3><p>Note that the quadratic term in OLS regression will capture outlier effects.</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">res</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">predict</span><span class="p">())</span> </pre></div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Estimate RLM:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">resrlm</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="nb">print</span><span class="p">(</span><span class="n">resrlm</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">resrlm</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>[ 5.05563298 0.52746225 -0.01292805] [ 0.47889156 0.07393439 0.00654205] [ 4.73243167 4.99833616 5.25993311 5.51722249 5.77020432 6.0188786 6.26324532 6.50330448 6.73905608 6.97050013 7.19763663 7.42046557 7.63898695 7.85320077 8.06310704 8.26870576 8.46999692 8.66698052 8.85965656 9.04802505 9.23208599 9.41183936 9.58728518 9.75842345 9.92525416 10.08777731 10.24599291 10.39990095 10.54950143 10.69479436 10.83577974 10.97245755 11.10482781 11.23289052 11.35664567 11.47609326 11.59123329 11.70206578 11.8085907 11.91080807 12.00871788 12.10232014 12.19161484 12.27660198 12.35728157 12.4336536 12.50571808 12.573475 12.63692436 12.69606617] </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Draw a plot to compare OLS estimates to the robust estimates:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span><span class="mi">8</span><span class="p">))</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y2</span><span class="p">,</span> <span class="s">'o'</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s">"data"</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y_true2</span><span class="p">,</span> <span class="s">'b-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"True"</span><span class="p">)</span> <span class="n">prstd</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="n">iv_u</span> <span class="o">=</span> <span class="n">wls_prediction_std</span><span class="p">(</span><span class="n">res</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">res</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">'r-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"OLS"</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_u</span><span class="p">,</span> <span class="s">'r--'</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="s">'r--'</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">resrlm</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">'g.-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"RLM"</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">"best"</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>[ 4.97550374e+00 5.13254535e-01 -2.01895684e-03] [ 0.10367794 0.01600647 0.00141633] </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <h3 id="Example-2:-linear-function-with-linear-truth">Example 2: linear function with linear truth<a class="anchor-link" href="#Example-2:-linear-function-with-linear-truth">¶</a></h3><p>Fit a new OLS model using only the linear term and the constant:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">X2</span> <span class="o">=</span> <span class="n">X</span><span class="p">[:,[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]]</span> <span class="n">res2</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X2</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="nb">print</span><span class="p">(</span><span class="n">res2</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">res2</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> </div> <div class="output_area"><div class="prompt"></div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Estimate RLM:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">resrlm2</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X2</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span> <span class="nb">print</span><span class="p">(</span><span class="n">resrlm2</span><span class="o">.</span><span class="n">params</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="n">resrlm2</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>[ 5.57671265 0.39818173] [ 0.41167908 0.03547193] </pre> </div> </div> </div> </div> </div> <div class="cell border-box-sizing text_cell rendered"> <div class="prompt input_prompt"> </div> <div class="inner_cell"> <div class="text_cell_render border-box-sizing rendered_html"> <p>Draw a plot to compare OLS estimates to the robust estimates:</p> </div> </div> </div> <div class="cell border-box-sizing code_cell rendered"> <div class="input"> <div class="prompt input_prompt">In [ ]:</div> <div class="inner_cell"> <div class="input_area"> <div class=" highlight hl-ipython3"><pre><span class="n">prstd</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="n">iv_u</span> <span class="o">=</span> <span class="n">wls_prediction_std</span><span class="p">(</span><span class="n">res2</span><span class="p">)</span> <span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y2</span><span class="p">,</span> <span class="s">'o'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"data"</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y_true2</span><span class="p">,</span> <span class="s">'b-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"True"</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">res2</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">'r-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"OLS"</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_u</span><span class="p">,</span> <span class="s">'r--'</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="s">'r--'</span><span class="p">)</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">resrlm2</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">'g.-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">"RLM"</span><span class="p">)</span> <span class="n">legend</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">"best"</span><span class="p">)</span> </pre></div> </div> </div> </div> <div class="output_wrapper"> <div class="output"> <div class="output_area"><div class="prompt"></div> <div class="output_subarea output_stream output_stdout output_text"> <pre>[ 5.03066706 0.49664337] [ 0.08236985 0.00709732] </pre> </div> </div> </div> </div> </div> <script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"type="text/javascript"></script> <script type="text/javascript"> init_mathjax = function() { if (window.MathJax) { // MathJax loaded MathJax.Hub.Config({ tex2jax: { // I'm not sure about the \( and \[ below. It messes with the // prompt, and I think it's an issue with the template. -SS inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ] }, displayAlign: 'left', // Change this to 'center' to center equations. "HTML-CSS": { styles: {'.MathJax_Display': {"margin": 0}} } }); MathJax.Hub.Queue(["Typeset",MathJax.Hub]); } } init_mathjax(); // since we have to load this in a ..raw:: directive we will add the css // after the fact function loadcssfile(filename){ var fileref=document.createElement("link") fileref.setAttribute("rel", "stylesheet") fileref.setAttribute("type", "text/css") fileref.setAttribute("href", filename) document.getElementsByTagName("head")[0].appendChild(fileref) } // loadcssfile({{pathto("_static/nbviewer.pygments.css", 1) }}) // loadcssfile({{pathto("_static/nbviewer.min.css", 1) }}) loadcssfile("../../../_static/nbviewer.pygments.css") loadcssfile("../../../_static/ipython.min.css") </script>