Robust Linear Models
======================


.. _robust_models_0_notebook:

`Link to Notebook GitHub <https://github.com/statsmodels/statsmodels/blob/master/examples/notebooks/robust_models_0.ipynb>`_

.. raw:: html

   
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">print_function</span>
   <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
   <span class="kn">import</span> <span class="nn">statsmodels.api</span> <span class="k">as</span> <span class="nn">sm</span>
   <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
   <span class="kn">from</span> <span class="nn">statsmodels.sandbox.regression.predstd</span> <span class="k">import</span> <span class="n">wls_prediction_std</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h2 id="Estimation">Estimation<a class="anchor-link" href="#Estimation">&#182;</a></h2><p>Load data:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">data</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">stackloss</span><span class="o">.</span><span class="n">load</span><span class="p">()</span>
   <span class="n">data</span><span class="o">.</span><span class="n">exog</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">exog</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Huber's T norm with the (default) median absolute deviation scaling</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">huber_t</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">endog</span><span class="p">,</span> <span class="n">data</span><span class="o">.</span><span class="n">exog</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="n">sm</span><span class="o">.</span><span class="n">robust</span><span class="o">.</span><span class="n">norms</span><span class="o">.</span><span class="n">HuberT</span><span class="p">())</span>
   <span class="n">hub_results</span> <span class="o">=</span> <span class="n">huber_t</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">summary</span><span class="p">(</span><span class="n">yname</span><span class="o">=</span><span class="s">&#39;y&#39;</span><span class="p">,</span>
               <span class="n">xname</span><span class="o">=</span><span class="p">[</span><span class="s">&#39;var_%d&#39;</span> <span class="o">%</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">hub_results</span><span class="o">.</span><span class="n">params</span><span class="p">))]))</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Huber's T norm with 'H2' covariance matrix</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">hub_results2</span> <span class="o">=</span> <span class="n">huber_t</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">cov</span><span class="o">=</span><span class="s">&quot;H2&quot;</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">hub_results2</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">hub_results2</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[-41.02649835   0.82938433   0.92606597  -0.12784672]
   [ 9.79189854  0.11100521  0.30293016  0.12864961]
                       Robust linear Model Regression Results                    
   ==============================================================================
   Dep. Variable:                      y   No. Observations:                   21
   Model:                            RLM   Df Residuals:                       17
   Method:                          IRLS   Df Model:                            3
   Norm:                          HuberT                                         
   Scale Est.:                       mad                                         
   Cov Type:                          H1                                         
   Date:                Mon, 20 Jul 2015                                         
   Time:                        17:44:35                                         
   No. Iterations:                    19                                         
   ==============================================================================
                    coef    std err          z      P&gt;|z|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   var_0        -41.0265      9.792     -4.190      0.000       -60.218   -21.835
   var_1          0.8294      0.111      7.472      0.000         0.612     1.047
   var_2          0.9261      0.303      3.057      0.002         0.332     1.520
   var_3         -0.1278      0.129     -0.994      0.320        -0.380     0.124
   ==============================================================================
   
   If the model instance has been used for another fit with different fit
   parameters, then the fit options might not be the correct ones anymore .
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Andrew's Wave norm with Huber's Proposal 2 scaling and 'H3' covariance matrix</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">andrew_mod</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">endog</span><span class="p">,</span> <span class="n">data</span><span class="o">.</span><span class="n">exog</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="n">sm</span><span class="o">.</span><span class="n">robust</span><span class="o">.</span><span class="n">norms</span><span class="o">.</span><span class="n">AndrewWave</span><span class="p">())</span>
   <span class="n">andrew_results</span> <span class="o">=</span> <span class="n">andrew_mod</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">scale_est</span><span class="o">=</span><span class="n">sm</span><span class="o">.</span><span class="n">robust</span><span class="o">.</span><span class="n">scale</span><span class="o">.</span><span class="n">HuberScale</span><span class="p">(),</span> <span class="n">cov</span><span class="o">=</span><span class="s">&quot;H3&quot;</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="s">&#39;Parameters: &#39;</span><span class="p">,</span> <span class="n">andrew_results</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[-41.02649835   0.82938433   0.92606597  -0.12784672]
   [ 9.08950419  0.11945975  0.32235497  0.11796313]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>See <code>help(sm.RLM.fit)</code> for more options and <code>module sm.robust.scale</code> for scale options</p>
   <h2 id="Comparing-OLS-and-RLM">Comparing OLS and RLM<a class="anchor-link" href="#Comparing-OLS-and-RLM">&#182;</a></h2><p>Artificial data with outliers:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">nsample</span> <span class="o">=</span> <span class="mi">50</span>
   <span class="n">x1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="n">nsample</span><span class="p">)</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">column_stack</span><span class="p">((</span><span class="n">x1</span><span class="p">,</span> <span class="p">(</span><span class="n">x1</span><span class="o">-</span><span class="mi">5</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">))</span>
   <span class="n">X</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
   <span class="n">sig</span> <span class="o">=</span> <span class="mf">0.3</span>   <span class="c"># smaller error variance makes OLS&lt;-&gt;RLM contrast bigger</span>
   <span class="n">beta</span> <span class="o">=</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0</span><span class="p">]</span>
   <span class="n">y_true2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">beta</span><span class="p">)</span>
   <span class="n">y2</span> <span class="o">=</span> <span class="n">y_true2</span> <span class="o">+</span> <span class="n">sig</span><span class="o">*</span><span class="mf">1.</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">nsample</span><span class="p">)</span>
   <span class="n">y2</span><span class="p">[[</span><span class="mi">39</span><span class="p">,</span><span class="mi">41</span><span class="p">,</span><span class="mi">43</span><span class="p">,</span><span class="mi">45</span><span class="p">,</span><span class="mi">48</span><span class="p">]]</span> <span class="o">-=</span> <span class="mi">5</span>   <span class="c"># add some outliers (10% of nsample)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>Parameters:  [-40.8817957    0.79276138   1.04857556  -0.13360865]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h3 id="Example-1:-quadratic-function-with-linear-truth">Example 1: quadratic function with linear truth<a class="anchor-link" href="#Example-1:-quadratic-function-with-linear-truth">&#182;</a></h3><p>Note that the quadratic term in OLS regression will capture outlier effects.</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">res</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res</span><span class="o">.</span><span class="n">predict</span><span class="p">())</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Estimate RLM:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">resrlm</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">resrlm</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">resrlm</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[ 5.05563298  0.52746225 -0.01292805]
   [ 0.47889156  0.07393439  0.00654205]
   [  4.73243167   4.99833616   5.25993311   5.51722249   5.77020432
      6.0188786    6.26324532   6.50330448   6.73905608   6.97050013
      7.19763663   7.42046557   7.63898695   7.85320077   8.06310704
      8.26870576   8.46999692   8.66698052   8.85965656   9.04802505
      9.23208599   9.41183936   9.58728518   9.75842345   9.92525416
     10.08777731  10.24599291  10.39990095  10.54950143  10.69479436
     10.83577974  10.97245755  11.10482781  11.23289052  11.35664567
     11.47609326  11.59123329  11.70206578  11.8085907   11.91080807
     12.00871788  12.10232014  12.19161484  12.27660198  12.35728157
     12.4336536   12.50571808  12.573475    12.63692436  12.69606617]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Draw a plot to compare OLS estimates to the robust estimates:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span><span class="mi">8</span><span class="p">))</span>
   <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y2</span><span class="p">,</span> <span class="s">&#39;o&#39;</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s">&quot;data&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y_true2</span><span class="p">,</span> <span class="s">&#39;b-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;True&quot;</span><span class="p">)</span>
   <span class="n">prstd</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="n">iv_u</span> <span class="o">=</span> <span class="n">wls_prediction_std</span><span class="p">(</span><span class="n">res</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">res</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">&#39;r-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;OLS&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_u</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">resrlm</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">&#39;g.-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;RLM&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&quot;best&quot;</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[  4.97550374e+00   5.13254535e-01  -2.01895684e-03]
   [ 0.10367794  0.01600647  0.00141633]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <h3 id="Example-2:-linear-function-with-linear-truth">Example 2: linear function with linear truth<a class="anchor-link" href="#Example-2:-linear-function-with-linear-truth">&#182;</a></h3><p>Fit a new OLS model using only the linear term and the constant:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">X2</span> <span class="o">=</span> <span class="n">X</span><span class="p">[:,[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]]</span> 
   <span class="n">res2</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">OLS</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X2</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res2</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">res2</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   
   </div>
   
   <div class="output_area"><div class="prompt"></div>
   
   
   
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Estimate RLM:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">resrlm2</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">RLM</span><span class="p">(</span><span class="n">y2</span><span class="p">,</span> <span class="n">X2</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">()</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">resrlm2</span><span class="o">.</span><span class="n">params</span><span class="p">)</span>
   <span class="nb">print</span><span class="p">(</span><span class="n">resrlm2</span><span class="o">.</span><span class="n">bse</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[ 5.57671265  0.39818173]
   [ 0.41167908  0.03547193]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>
   <div class="cell border-box-sizing text_cell rendered">
   <div class="prompt input_prompt">
   </div>
   <div class="inner_cell">
   <div class="text_cell_render border-box-sizing rendered_html">
   <p>Draw a plot to compare OLS estimates to the robust estimates:</p>
   
   </div>
   </div>
   </div>
   <div class="cell border-box-sizing code_cell rendered">
   <div class="input">
   <div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
   <div class="inner_cell">
       <div class="input_area">
   <div class=" highlight hl-ipython3"><pre><span class="n">prstd</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="n">iv_u</span> <span class="o">=</span> <span class="n">wls_prediction_std</span><span class="p">(</span><span class="n">res2</span><span class="p">)</span>
   
   <span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y2</span><span class="p">,</span> <span class="s">&#39;o&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;data&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">y_true2</span><span class="p">,</span> <span class="s">&#39;b-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;True&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">res2</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">&#39;r-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;OLS&quot;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_u</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">iv_l</span><span class="p">,</span> <span class="s">&#39;r--&#39;</span><span class="p">)</span>
   <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">resrlm2</span><span class="o">.</span><span class="n">fittedvalues</span><span class="p">,</span> <span class="s">&#39;g.-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&quot;RLM&quot;</span><span class="p">)</span>
   <span class="n">legend</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&quot;best&quot;</span><span class="p">)</span>
   </pre></div>
   
   </div>
   </div>
   </div>
   
   <div class="output_wrapper">
   <div class="output">
   
   
   <div class="output_area"><div class="prompt"></div>
   <div class="output_subarea output_stream output_stdout output_text">
   <pre>[ 5.03066706  0.49664337]
   [ 0.08236985  0.00709732]
   </pre>
   </div>
   </div>
   
   </div>
   </div>
   
   </div>

   <script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"type="text/javascript"></script>
   <script type="text/javascript">
   init_mathjax = function() {
       if (window.MathJax) {
           // MathJax loaded
           MathJax.Hub.Config({
               tex2jax: {
               // I'm not sure about the \( and \[ below. It messes with the
               // prompt, and I think it's an issue with the template. -SS
                   inlineMath: [ ['$','$'], ["\\(","\\)"] ],
                   displayMath: [ ['$$','$$'], ["\\[","\\]"] ]
               },
               displayAlign: 'left', // Change this to 'center' to center equations.
               "HTML-CSS": {
                   styles: {'.MathJax_Display': {"margin": 0}}
               }
           });
           MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
       }
   }
   init_mathjax();

   // since we have to load this in a ..raw:: directive we will add the css
   // after the fact
   function loadcssfile(filename){
       var fileref=document.createElement("link")
       fileref.setAttribute("rel", "stylesheet")
       fileref.setAttribute("type", "text/css")
       fileref.setAttribute("href", filename)

       document.getElementsByTagName("head")[0].appendChild(fileref)
   }
   // loadcssfile({{pathto("_static/nbviewer.pygments.css", 1) }})
   // loadcssfile({{pathto("_static/nbviewer.min.css", 1) }})
   loadcssfile("../../../_static/nbviewer.pygments.css")
   loadcssfile("../../../_static/ipython.min.css")
   </script>