statsmodels.duration.hazard_regression.PHRegResults¶
-
class
statsmodels.duration.hazard_regression.PHRegResults(model, params, cov_params, covariance_type='naive')[source]¶ Class to contain results of fitting a Cox proportional hazards survival model.
PHregResults inherits from statsmodels.LikelihoodModelResults
Parameters: See statsmodels.LikelihoodModelResults
Returns: Attributes
model : class instance
PHreg model instance that called fit.
normalized_cov_params : array
The sampling covariance matrix of the estimates
params : array
The coefficients of the fitted model. Each coefficient is the log hazard ratio corresponding to a 1 unit difference in a single covariate while holding the other covariates fixed.
bse : array
The standard errors of the fitted parameters.
See also
statsmodels.LikelihoodModelResultsMethods
baseline_cumulative_hazard()A list (corresponding to the strata) containing the baseline cumulative hazard function evaluated at the event points. baseline_cumulative_hazard_function()A list (corresponding to the strata) containing function objects that calculate the cumulative hazard function. bse()Returns the standard errors of the parameter estimates. get_distribution()Returns a scipy distribution object corresponding to the distribution of uncensored endog (duration) values for each case. martingale_residuals()The martingale residuals. predict([endog, exog, strata, offset, pred_type])Returns predicted values from the fitted proportional hazards regression model. schoenfeld_residuals()A matrix containing the Schoenfeld residuals. score_residuals()A matrix containing the score residuals. standard_errors()Returns the standard errors of the parameter estimates. summary([yname, xname, title, alpha])Summarize the proportional hazards regression results. weighted_covariate_averages()The average covariate values within the at-risk set at each event time point, weighted by hazard. Attributes
use_t
