"""
Overview
--------
This module implements the Multiple Imputation through Chained
Equations (MICE) approach to handling missing data in statistical data
analyses. The approach has the following steps:
0. Impute each missing value with the mean of the observed values of
the same variable.
1. For each variable in the data set with missing values (termed the
'focus variable'), do the following:
1a. Fit an 'imputation model', which is a regression model for the
focus variable, regressed on the observed and (current) imputed values
of some or all of the other variables.
1b. Impute the missing values for the focus variable. Currently this
imputation must use the 'predictive mean matching' (pmm) procedure.
2. Once all variables have been imputed, fit the 'analysis model' to
the data set.
3. Repeat steps 1-2 multiple times and combine the results using a
'combining rule' to produce point estimates of all parameters in the
analysis model and standard errors for them.
The imputations for each variable are based on an imputation model
that is specified via a model class and a formula for the regression
relationship. The default model is OLS, with a formula specifying
main effects for all other variables.
The MICE procedure can be used in one of two ways:
* If the goal is only to produce imputed data sets, the MICEData class
can be used to wrap a data frame, providing facilities for doing the
imputation. Summary plots are available for assessing the performance
of the imputation.
* If the imputed data sets are to be used to fit an additional
'analysis model', a MICE instance can be used. After specifying the
MICE instance and running it, the results are combined using the
`combine` method. Results and various summary plots are then
available.
Terminology
-----------
The primary goal of the analysis is usually to fit and perform
inference using an 'analysis model'. If an analysis model is not
specified, then imputed datasets are produced for later use.
The MICE procedure involves a family of imputation models. There is
one imputation model for each variable with missing values. An
imputation model may be conditioned on all or a subset of the
remaining variables, using main effects, transformations,
interactions, etc. as desired.
A 'perturbation method' is a method for setting the parameter estimate
in an imputation model. The 'gaussian' perturbation method first fits
the model (usually using maximum likelihood, but it could use any
statsmodels fit procedure), then sets the parameter vector equal to a
draw from the Gaussian approximation to the sampling distribution for
the fit. The 'bootstrap' perturbation method sets the parameter
vector equal to a fitted parameter vector obtained when fitting the
conditional model to a bootstrapped version of the data set.
Class structure
---------------
There are two main classes in the module:
* 'MICEData' wraps a Pandas dataframe, incorporating information about
the imputation model for each variable with missing values. It can
be used to produce multiply imputed data sets that are to be further
processed or distributed to other researchers. A number of plotting
procedures are provided to visualize the imputation results and
missing data patterns. The `history_func` hook allows any features
of interest of the imputed data sets to be saved for further
analysis.
* 'MICE' takes both a 'MICEData' object and an analysis model
specification. It runs the multiple imputation, fits the analysis
models, and combines the results to produce a `MICEResults` object.
The summary method of this results object can be used to see the key
estimands and inferential quantities..
Notes
-----
By default, to conserve memory 'MICEData' saves very little
information from one iteration to the next. The data set passed by
the user is copied on entry, but then is over-written each time new
imputations are produced. If using 'MICE', the fitted
analysis models and results are saved. MICEData includes a
`history_callback` hook that allows arbitrary information from the
intermediate datasets to be saved for future use.
References
----------
JL Schafer: 'Multiple Imputation: A Primer', Stat Methods Med Res,
1999.
TE Raghunathan et al.: 'A Multivariate Technique for Multiply
Imputing Missing Values Using a Sequence of Regression Models', Survey
Methodology, 2001.
SAS Institute: 'Predictive Mean Matching Method for Monotone Missing
Data', SAS 9.2 User's Guide, 2014.
A Gelman et al.: 'Multiple Imputation with Diagnostics (mi) in R:
Opening Windows into the Black Box', Journal of Statistical Software,
2009.
"""
import pandas as pd
import numpy as np
import patsy
import statsmodels
from statsmodels.base.model import LikelihoodModelResults
from statsmodels.regression.linear_model import OLS
from collections import defaultdict
_mice_data_example_1 = """
>>> imp = mice.MICEData(data)
>>> imp.set_imputer('x1', formula='x2 + np.square(x2) + x3')
>>> for j in range(20):
... imp.update_all()
... imp.data.to_csv('data%02d.csv' % j)"""
_mice_data_example_2 = """
>>> imp = mice.MICEData(data)
>>> j = 0
>>> for data in imp:
... imp.data.to_csv('data%02d.csv' % j)
... j += 1"""
class PatsyFormula(object):
"""
A simple wrapper for a string to be interpreted as a Patsy formula.
"""
def __init__(self, formula):
self.formula = "0 + " + formula
[docs]class MICEData(object):
__doc__ = """\
Wrap a data set to allow missing data handling with MICE.
Parameters
----------
data : Pandas data frame
The data set, whch is copied internally.
perturbation_method : string
The default perturbation method
k_pmm : int
The number of nearest neighbors to use during predictive mean
matching. Can also be specified in `fit`.
history_callback : function
A function that is called after each complete imputation
cycle. The return value is appended to `history`. The
MICEData object is passed as the sole argument to
`history_callback`.
Examples
--------
Draw 20 imputations from a data set called `data` and save them in
separate files with filename pattern `dataXX.csv`. The variables
other than `x1` are imputed using linear models fit with OLS, with
mean structures containing main effects of all other variables in
`data`. The variable named `x1` has a condtional mean structure
that includes an additional term for x2^2.
%(_mice_data_example_1)s
Impute using default models, using the MICEData object as an
iterator.
%(_mice_data_example_2)s
Notes
-----
Allowed perturbation methods are 'gaussian' (the model parameters
are set to a draw from the Gaussian approximation to the posterior
distribution), and 'boot' (the model parameters are set to the
estimated values obtained when fitting a bootstrapped version of
the data set).
`history_callback` can be implemented to have side effects such as
saving the current imputed data set to disk.
""" % {'_mice_data_example_1': _mice_data_example_1,
'_mice_data_example_2': _mice_data_example_2}
def __init__(self, data, perturbation_method='gaussian',
k_pmm=20, history_callback=None):
if data.columns.dtype != np.dtype('O'):
raise ValueError("MICEData data column names should be string type")
# Drop observations where all variables are missing. This
# also has the effect of copying the data frame.
self.data = data.dropna(how='all').reset_index(drop=True)
self.history_callback = history_callback
self.history = []
self.predict_kwds = {}
# Assign the same perturbation method for all variables.
# Can be overriden when calling 'set_imputer'.
self.perturbation_method = defaultdict(lambda :
perturbation_method)
# Map from variable name to indices of observed/missing
# values.
self.ix_obs = {}
self.ix_miss = {}
for col in self.data.columns:
ix_obs, ix_miss = self._split_indices(self.data[col])
self.ix_obs[col] = ix_obs
self.ix_miss[col] = ix_miss
# Most recent model instance and results instance for each variable.
self.models = {}
self.results = {}
# Map from variable names to the conditional formula.
self.conditional_formula = {}
# Map from variable names to init/fit args of the conditional
# models.
self.init_kwds = defaultdict(lambda : dict())
self.fit_kwds = defaultdict(lambda : dict())
# Map from variable names to the model class.
self.model_class = {}
# Map from variable names to most recent params update.
self.params = {}
# Set default imputers.
for vname in data.columns:
self.set_imputer(vname)
# The order in which variables are imputed in each cycle.
# Impute variables with the fewest missing values first.
vnames =list(data.columns)
nmiss = [len(self.ix_miss[v]) for v in vnames]
nmiss = np.asarray(nmiss)
ii = np.argsort(nmiss)
ii = ii[sum(nmiss == 0):]
self._cycle_order = [vnames[i] for i in ii]
self._initial_imputation()
self.k_pmm = k_pmm
[docs] def next_sample(self):
"""
Returns the next imputed dataset in the imputation process.
Returns
-------
data : array-like
An imputed dataset from the MICE chain.
Notes
-----
`MICEData` does not have a `skip` parameter. Consecutive
values returned by `next_sample` are immediately consecutive
in the imputation chain.
The returned value is a reference to the data attribute of
the class and should be copied before making any changes.
"""
self.update_all(1)
return self.data
def _initial_imputation(self):
"""
Use a PMM-like procedure for initial imputed values.
For each variable, missing values are imputed as the observed
value that is closest to the mean over all observed values.
"""
for col in self.data.columns:
di = self.data[col] - self.data[col].mean()
di = np.abs(di)
ix = di.idxmin()
imp = di.loc[ix]
self.data[col].fillna(imp, inplace=True)
def _split_indices(self, vec):
null = pd.isnull(vec)
ix_obs = np.flatnonzero(~null)
ix_miss = np.flatnonzero(null)
if len(ix_obs) == 0:
raise ValueError("variable to be imputed has no observed values")
return ix_obs, ix_miss
[docs] def set_imputer(self, endog_name, formula=None, model_class=None,
init_kwds=None, fit_kwds=None, predict_kwds=None,
k_pmm=20, perturbation_method=None):
"""
Specify the imputation process for a single variable.
Parameters
----------
endog_name : string
Name of the variable to be imputed.
formula : string
Conditional formula for imputation. Defaults to a formula
with main effects for all other variables in dataset. The
formula should only include an expression for the mean
structure, e.g. use 'x1 + x2' not 'x4 ~ x1 + x2'.
model_class : statsmodels model
Conditional model for imputation. Defaults to OLS. See below
for more information.
init_kwds : dit-like
Keyword arguments passed to the model init method.
fit_kwds : dict-like
Keyword arguments passed to the model fit method.
predict_kwds : dict-like
Keyword arguments passed to the model predict method.
k_pmm : int
Determines number of neighboring observations from which
to randomly sample when using predictive mean matching.
perturbation_method : string
Either 'gaussian' or 'bootstrap'. Determines the method
for perturbing parameters in the imputation model. If
None, uses the default specified at class initialization.
Notes
-----
The model class must meet the following conditions:
* A model must have a 'fit' method that returns an object.
* The object returned from `fit` must have a `params` attribute
that is an array-like object.
* The object returned from `fit` must have a cov_params method
that returns a square array-like object.
* The model must have a `predict` method.
"""
if formula is None:
main_effects = [x for x in self.data.columns
if x != endog_name]
fml = endog_name + " ~ " + " + ".join(main_effects)
self.conditional_formula[endog_name] = fml
else:
fml = endog_name + " ~ " + formula
self.conditional_formula[endog_name] = fml
if model_class is None:
self.model_class[endog_name] = OLS
else:
self.model_class[endog_name] = model_class
if init_kwds is not None:
self.init_kwds[endog_name] = init_kwds
if fit_kwds is not None:
self.fit_kwds[endog_name] = fit_kwds
if predict_kwds is not None:
self.predict_kwds[endog_name] = predict_kwds
if perturbation_method is not None:
self.perturbation_method[endog_name] = perturbation_method
self.k_pmm = k_pmm
def _store_changes(self, col, vals):
"""
Fill in dataset with imputed values.
Parameters
----------
col : string
Name of variable to be filled in.
vals : array
Array of imputed values to use for filling-in missing values.
"""
ix = self.ix_miss[col]
if len(ix) > 0:
self.data[col].iloc[ix] = vals
[docs] def update_all(self, n_iter=1):
"""
Perform a specified number of MICE iterations.
Parameters
----------
n_iter : int
The number of updates to perform. Only the result of the
final update will be available.
Notes
-----
The imputed values are stored in the class attribute `self.data`.
"""
for k in range(n_iter):
for vname in self._cycle_order:
self.update(vname)
if self.history_callback is not None:
hv = self.history_callback(self)
self.history.append(hv)
[docs] def get_split_data(self, vname):
"""
Return endog and exog for imputation of a given variable.
Parameters
----------
vname : string
The variable for which the split data is returned.
Returns
-------
endog_obs : DataFrame
Observed values of the variable to be imputed.
exog_obs : DataFrame
Current values of the predictors where the variable to be
imputed is observed.
exog_miss : DataFrame
Current values of the predictors where the variable to be
Imputed is missing.
init_kwds : dict-like
The init keyword arguments for `vname`, processed through Patsy
as required.
fit_kwds : dict-like
The fit keyword arguments for `vname`, processed through Patsy
as required.
"""
formula = self.conditional_formula[vname]
endog, exog = patsy.dmatrices(formula, self.data,
return_type="dataframe")
# Rows with observed endog
ixo = self.ix_obs[vname]
endog_obs = np.asarray(endog.iloc[ixo])
exog_obs = np.asarray(exog.iloc[ixo, :])
# Rows with missing endog
ixm = self.ix_miss[vname]
exog_miss = np.asarray(exog.iloc[ixm, :])
predict_obs_kwds = {}
if vname in self.predict_kwds:
kwds = self.predict_kwds[vname]
predict_obs_kwds = self._process_kwds(kwds, ixo)
predict_miss_kwds = {}
if vname in self.predict_kwds:
kwds = self.predict_kwds[vname]
predict_miss_kwds = self._process_kwds(kwds, ixo)
return endog_obs, exog_obs, exog_miss, predict_obs_kwds, predict_miss_kwds
def _process_kwds(self, kwds, ix):
kwds = kwds.copy()
for k in kwds:
v = kwds[k]
if isinstance(v, PatsyFormula):
mat = patsy.dmatrix(v.formula, self.data,
return_type="dataframe")
mat = np.asarray(mat)[ix, :]
if mat.shape[1] == 1:
mat = mat[:, 0]
kwds[k] = mat
return kwds
[docs] def get_fitting_data(self, vname):
"""
Return the data needed to fit a model for imputation.
The data is used to impute variable `vname`, and therefore
only includes cases for which `vname` is observed.
Values of type `PatsyFormula` in `init_kwds` or `fit_kwds` are
processed through Patsy and subset to align with the model's
endog and exog.
Parameters
----------
vname : string
The variable for which the fitting data is returned.
Returns
-------
endog : DataFrame
Observed values of `vname`.
exog : DataFrame
Regression design matrix for imputing `vname`.
init_kwds : dict-like
The init keyword arguments for `vname`, processed through Patsy
as required.
fit_kwds : dict-like
The fit keyword arguments for `vname`, processed through Patsy
as required.
"""
# Rows with observed endog
ix = self.ix_obs[vname]
formula = self.conditional_formula[vname]
endog, exog = patsy.dmatrices(formula, self.data,
return_type="dataframe")
endog = np.asarray(endog.iloc[ix, 0])
exog = np.asarray(exog.iloc[ix, :])
init_kwds = self._process_kwds(self.init_kwds[vname], ix)
fit_kwds = self._process_kwds(self.fit_kwds[vname], ix)
return endog, exog, init_kwds, fit_kwds
[docs] def plot_missing_pattern(self, ax=None, row_order="pattern",
column_order="pattern",
hide_complete_rows=False,
hide_complete_columns=False,
color_row_patterns=True):
"""
Generate an image showing the missing data pattern.
Parameters
----------
ax : matplotlib axes
Axes on which to draw the plot.
row_order : string
The method for ordering the rows. Must be one of 'pattern',
'proportion', or 'raw'.
column_order : string
The method for ordering the columns. Must be one of 'pattern',
'proportion', or 'raw'.
hide_complete_rows : boolean
If True, rows with no missing values are not drawn.
hide_complete_columns : boolean
If True, columns with no missing values are not drawn.
color_row_patterns : boolean
If True, color the unique row patterns, otherwise use grey
and white as colors.
Returns
-------
A figure containing a plot of the missing data pattern.
"""
# Create an indicator matrix for missing values.
miss = np.zeros(self.data.shape)
cols = self.data.columns
for j, col in enumerate(cols):
ix = self.ix_miss[col]
miss[ix, j] = 1
# Order the columns as requested
if column_order == "proportion":
ix = np.argsort(miss.mean(0))
elif column_order == "pattern":
cv = np.cov(miss.T)
u, s, vt = np.linalg.svd(cv, 0)
ix = np.argsort(cv[:, 0])
elif column_order == "raw":
ix = np.arange(len(cols))
else:
raise ValueError(column_order + " is not an allowed value for `column_order`.")
miss = miss[:, ix]
cols = [cols[i] for i in ix]
# Order the rows as requested
if row_order == "proportion":
ix = np.argsort(miss.mean(1))
elif row_order == "pattern":
x = 2**np.arange(miss.shape[1])
rky = np.dot(miss, x)
ix = np.argsort(rky)
elif row_order == "raw":
ix = np.arange(miss.shape[0])
else:
raise ValueError(row_order + " is not an allowed value for `row_order`.")
miss = miss[ix, :]
if hide_complete_rows:
ix = np.flatnonzero((miss == 1).any(1))
miss = miss[ix, :]
if hide_complete_columns:
ix = np.flatnonzero((miss == 1).any(0))
miss = miss[:, ix]
cols = [cols[i] for i in ix]
from statsmodels.graphics import utils as gutils
from matplotlib.colors import LinearSegmentedColormap
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
if color_row_patterns:
x = 2**np.arange(miss.shape[1])
rky = np.dot(miss, x)
_, rcol = np.unique(rky, return_inverse=True)
miss *= 1 + rcol[:, None]
ax.imshow(miss, aspect="auto", interpolation="nearest",
cmap='gist_ncar_r')
else:
cmap = LinearSegmentedColormap.from_list("_",
["white", "darkgrey"])
ax.imshow(miss, aspect="auto", interpolation="nearest",
cmap=cmap)
ax.set_ylabel("Cases")
ax.set_xticks(range(len(cols)))
ax.set_xticklabels(cols, rotation=90)
return fig
[docs] def plot_bivariate(self, col1_name, col2_name,
lowess_args=None, lowess_min_n=40,
jitter=None, plot_points=True, ax=None):
"""
Plot observed and imputed values for two variables.
Displays a scatterplot of one variable against another. The
points are colored according to whether the values are
observed or imputed.
Parameters
----------
col1_name : string
The variable to be plotted on the horizontal axis.
col2_name : string
The variable to be plotted on the vertical axis.
lowess_args : dictionary
A dictionary of dictionaries, keys are 'ii', 'io', 'oi'
and 'oo', where 'o' denotes 'observed' and 'i' denotes
imputed. See Notes for details.
lowess_min_n : integer
Minimum sample size to plot a lowess fit
jitter : float or tuple
Standard deviation for jittering points in the plot.
Either a single scalar applied to both axes, or a tuple
containing x-axis jitter and y-axis jitter, respectively.
plot_points : bool
If True, the data points are plotted.
ax : matplotlib axes object
Axes on which to plot, created if not provided.
Returns
-------
The matplotlib figure on which the plot id drawn.
"""
from statsmodels.graphics import utils as gutils
from statsmodels.nonparametric.smoothers_lowess import lowess
if lowess_args is None:
lowess_args = {}
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
ax.set_position([0.1, 0.1, 0.7, 0.8])
ix1i = self.ix_miss[col1_name]
ix1o = self.ix_obs[col1_name]
ix2i = self.ix_miss[col2_name]
ix2o = self.ix_obs[col2_name]
ix_ii = np.intersect1d(ix1i, ix2i)
ix_io = np.intersect1d(ix1i, ix2o)
ix_oi = np.intersect1d(ix1o, ix2i)
ix_oo = np.intersect1d(ix1o, ix2o)
vec1 = np.asarray(self.data[col1_name])
vec2 = np.asarray(self.data[col2_name])
if jitter is not None:
if np.isscalar(jitter):
jitter = (jitter, jitter)
vec1 += jitter[0] * np.random.normal(size=len(vec1))
vec2 += jitter[1] * np.random.normal(size=len(vec2))
# Plot the points
keys = ['oo', 'io', 'oi', 'ii']
lak = {'i': 'imp', 'o': 'obs'}
ixs = {'ii': ix_ii, 'io': ix_io, 'oi': ix_oi, 'oo': ix_oo}
color = {'oo': 'grey', 'ii': 'red', 'io': 'orange',
'oi': 'lime'}
if plot_points:
for ky in keys:
ix = ixs[ky]
lab = lak[ky[0]] + "/" + lak[ky[1]]
ax.plot(vec1[ix], vec2[ix], 'o', color=color[ky],
label=lab, alpha=0.6)
# Plot the lowess fits
for ky in keys:
ix = ixs[ky]
if len(ix) < lowess_min_n:
continue
if ky in lowess_args:
la = lowess_args[ky]
else:
la = {}
ix = ixs[ky]
lfit = lowess(vec2[ix], vec1[ix], **la)
if plot_points:
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
alpha=0.6, lw=4)
else:
lab = lak[ky[0]] + "/" + lak[ky[1]]
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
alpha=0.6, lw=4, label=lab)
ha, la = ax.get_legend_handles_labels()
pad = 0.0001 if plot_points else 0.5
leg = fig.legend(ha, la, 'center right', numpoints=1,
handletextpad=pad)
leg.draw_frame(False)
ax.set_xlabel(col1_name)
ax.set_ylabel(col2_name)
return fig
[docs] def plot_fit_obs(self, col_name, lowess_args=None,
lowess_min_n=40, jitter=None,
plot_points=True, ax=None):
"""
Plot fitted versus imputed or observed values as a scatterplot.
Parameters
----------
col_name : string
The variable to be plotted on the horizontal axis.
lowess_args : dict-like
Keyword arguments passed to lowess fit. A dictionary of
dictionaries, keys are 'o' and 'i' denoting 'observed' and
'imputed', respectively.
lowess_min_n : integer
Minimum sample size to plot a lowess fit
jitter : float or tuple
Standard deviation for jittering points in the plot.
Either a single scalar applied to both axes, or a tuple
containing x-axis jitter and y-axis jitter, respectively.
plot_points : bool
If True, the data points are plotted.
ax : matplotlib axes object
Axes on which to plot, created if not provided.
Returns
-------
The matplotlib figure on which the plot is drawn.
"""
from statsmodels.graphics import utils as gutils
from statsmodels.nonparametric.smoothers_lowess import lowess
import pandas as pd
if lowess_args is None:
lowess_args = {}
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
ax.set_position([0.1, 0.1, 0.7, 0.8])
ixi = self.ix_miss[col_name]
ixo = self.ix_obs[col_name]
vec1 = np.asarray(self.data[col_name])
# Fitted values
formula = self.conditional_formula[col_name]
endog, exog = patsy.dmatrices(formula, self.data,
return_type="dataframe")
results = self.results[col_name]
vec2 = results.predict(exog=exog)
vec2 = self._get_predicted(vec2)
if jitter is not None:
if np.isscalar(jitter):
jitter = (jitter, jitter)
vec1 += jitter[0] * np.random.normal(size=len(vec1))
vec2 += jitter[1] * np.random.normal(size=len(vec2))
# Plot the points
keys = ['o', 'i']
ixs = {'o': ixo, 'i': ixi}
lak = {'o': 'obs', 'i': 'imp'}
color = {'o': 'orange', 'i': 'lime'}
if plot_points:
for ky in keys:
ix = ixs[ky]
ax.plot(vec1[ix], vec2[ix], 'o', color=color[ky],
label=lak[ky], alpha=0.6)
# Plot the lowess fits
for ky in keys:
ix = ixs[ky]
if len(ix) < lowess_min_n:
continue
if ky in lowess_args:
la = lowess_args[ky]
else:
la = {}
ix = ixs[ky]
lfit = lowess(vec2[ix], vec1[ix], **la)
ax.plot(lfit[:, 0], lfit[:, 1], '-', color=color[ky],
alpha=0.6, lw=4, label=lak[ky])
ha, la = ax.get_legend_handles_labels()
leg = fig.legend(ha, la, 'center right', numpoints=1)
leg.draw_frame(False)
ax.set_xlabel(col_name + " observed or imputed")
ax.set_ylabel(col_name + " fitted")
return fig
[docs] def plot_imputed_hist(self, col_name, ax=None, imp_hist_args=None,
obs_hist_args=None, all_hist_args=None):
"""
Display imputed values for one variable as a histogram.
Parameters
----------
col_name : string
The name of the variable to be plotted.
ax : matplotlib axes
An axes on which to draw the histograms. If not provided,
one is created.
imp_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for imputed values.
obs_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for observed values.
all_hist_args : dict
Keyword arguments to be passed to pyplot.hist when
creating the histogram for all values.
Returns
-------
The matplotlib figure on which the histograms were drawn
"""
from statsmodels.graphics import utils as gutils
from matplotlib.colors import LinearSegmentedColormap
if imp_hist_args is None:
imp_hist_args = {}
if obs_hist_args is None:
obs_hist_args = {}
if all_hist_args is None:
all_hist_args = {}
if ax is None:
fig, ax = gutils.create_mpl_ax(ax)
else:
fig = ax.get_figure()
ax.set_position([0.1, 0.1, 0.7, 0.8])
ixm = self.ix_miss[col_name]
ixo = self.ix_obs[col_name]
imp = self.data[col_name].iloc[ixm]
obs = self.data[col_name].iloc[ixo]
for di in imp_hist_args, obs_hist_args, all_hist_args:
if 'histtype' not in di:
di['histtype'] = 'step'
ha, la = [], []
if len(imp) > 0:
h = ax.hist(np.asarray(imp), **imp_hist_args)
ha.append(h[-1][0])
la.append("Imp")
h1 = ax.hist(np.asarray(obs), **obs_hist_args)
h2 = ax.hist(np.asarray(self.data[col_name]), **all_hist_args)
ha.extend([h1[-1][0], h2[-1][0]])
la.extend(["Obs", "All"])
leg = fig.legend(ha, la, 'center right', numpoints=1)
leg.draw_frame(False)
ax.set_xlabel(col_name)
ax.set_ylabel("Frequency")
return fig
def _boot_kwds(self, kwds, rix):
for k in kwds:
v = kwds[k]
if not isinstance(v, np.ndarray):
continue
if (v.ndim == 1) and (v.shape[0] == len(rix)):
kwds[k] = v[rix]
if (v.ndim == 2) and (v.shape[0] == len(rix)):
kwds[k] = v[rix, :]
return kwds
def _perturb_bootstrap(self, vname):
"""
Perturbs the model's parameters using a bootstrap.
"""
endog, exog, init_kwds, fit_kwds = self.get_fitting_data(vname)
m = len(endog)
rix = np.random.randint(0, m, m)
endog = endog[rix]
exog = exog[rix, :]
init_kwds = self._boot_kwds(init_kwds, rix)
fit_kwds = self._boot_kwds(fit_kwds, rix)
klass = self.model_class[vname]
self.models[vname] = klass(endog, exog, **init_kwds)
self.results[vname] = self.models[vname].fit(**fit_kwds)
self.params[vname] = self.results[vname].params
def _perturb_gaussian(self, vname):
"""
Gaussian perturbation of model parameters.
The normal approximation to the sampling distribution of the
parameter estimates is used to define the mean and covariance
structure of the perturbation distribution.
"""
endog, exog, init_kwds, fit_kwds = self.get_fitting_data(vname)
klass = self.model_class[vname]
self.models[vname] = klass(endog, exog, **init_kwds)
self.results[vname] = self.models[vname].fit(**fit_kwds)
cov = self.results[vname].cov_params()
mu = self.results[vname].params
self.params[vname] = np.random.multivariate_normal(mean=mu, cov=cov)
[docs] def perturb_params(self, vname):
if self.perturbation_method[vname] == "gaussian":
self._perturb_gaussian(vname)
elif self.perturbation_method[vname] == "boot":
self._perturb_bootstrap(vname)
else:
raise ValueError("unknown perturbation method")
[docs] def impute(self, vname):
# Wrap this in case we later add additional imputation
# methods.
self.impute_pmm(vname)
[docs] def update(self, vname):
"""
Impute missing values for a single variable.
This is a two-step process in which first the parameters are
perturbed, then the missing values are re-imputed.
Parameters
----------
vname : string
The name of the variable to be updated.
"""
self.perturb_params(vname)
self.impute(vname)
# work-around for inconsistent predict return values
def _get_predicted(self, obj):
if isinstance(obj, np.ndarray):
return obj
elif isinstance(obj, pd.Series):
return obj.values
elif hasattr(obj, 'predicted_values'):
return obj.predicted_values
else:
raise ValueError("cannot obtain predicted values from %s" % obj.__class__)
[docs] def impute_pmm(self, vname):
"""
Use predictive mean matching to impute missing values.
Notes
-----
The `perturb_params` method must be called first to define the
model.
"""
k_pmm = self.k_pmm
endog_obs, exog_obs, exog_miss, predict_obs_kwds, predict_miss_kwds =\
self.get_split_data(vname)
# Predict imputed variable for both missing and non-missing
# observations
model = self.models[vname]
pendog_obs = model.predict(self.params[vname], exog_obs, **predict_obs_kwds)
pendog_miss = model.predict(self.params[vname], exog_miss, **predict_miss_kwds)
pendog_obs = self._get_predicted(pendog_obs)
pendog_miss = self._get_predicted(pendog_miss)
# Jointly sort the observed and predicted endog values for the
# cases with observed values.
ii = np.argsort(pendog_obs)
endog_obs = endog_obs[ii]
pendog_obs = pendog_obs[ii]
# Find the closest match to the predicted endog values for
# cases with missing endog values.
ix = np.searchsorted(pendog_obs, pendog_miss)
# Get the indices for the closest k_pmm values on
# either side of the closest index.
ixm = ix[:, None] + np.arange(-k_pmm, k_pmm)[None, :]
# Account for boundary effects
msk = np.nonzero((ixm < 0) | (ixm > len(endog_obs) - 1))
ixm = np.clip(ixm, 0, len(endog_obs) - 1)
# Get the distances
dx = pendog_miss[:, None] - pendog_obs[ixm]
dx = np.abs(dx)
dx[msk] = np.inf
# Closest positions in ix, row-wise.
dxi = np.argsort(dx, 1)[:, 0:k_pmm]
# Choose a column for each row.
ir = np.random.randint(0, k_pmm, len(pendog_miss))
# Unwind the indices
jj = np.arange(dxi.shape[0])
ix = dxi[[jj, ir]]
iz = ixm[[jj, ix]]
imputed_miss = np.array(endog_obs[iz])
self._store_changes(vname, imputed_miss)
_mice_example_1 = """
>>> imp = mice.MICEData(data)
>>> fml = 'y ~ x1 + x2 + x3 + x4'
>>> mice = mice.MICE(fml, sm.OLS, imp)
>>> results = mice.fit(10, 10)
>>> print(results.summary())
::
Results: MICE
=================================================================
Method: MICE Sample size: 1000
Model: OLS Scale 1.00
Dependent variable: y Num. imputations 10
-----------------------------------------------------------------
Coef. Std.Err. t P>|t| [0.025 0.975] FMI
-----------------------------------------------------------------
Intercept -0.0234 0.0318 -0.7345 0.4626 -0.0858 0.0390 0.0128
x1 1.0305 0.0578 17.8342 0.0000 0.9172 1.1437 0.0309
x2 -0.0134 0.0162 -0.8282 0.4076 -0.0451 0.0183 0.0236
x3 -1.0260 0.0328 -31.2706 0.0000 -1.0903 -0.9617 0.0169
x4 -0.0253 0.0336 -0.7520 0.4521 -0.0911 0.0406 0.0269
=================================================================
"""
_mice_example_2 = """
>>> imp = mice.MICEData(data)
>>> fml = 'y ~ x1 + x2 + x3 + x4'
>>> mice = mice.MICE(fml, sm.OLS, imp)
>>> results = []
>>> for k in range(10):
>>> x = mice.next_sample()
>>> results.append(x)
"""
[docs]class MICE(object):
__doc__ = """\
Multiple Imputation with Chained Equations.
This class can be used to fit most Statsmodels models to data sets
with missing values using the 'multiple imputation with chained
equations' (MICE) approach..
Parameters
----------
model_formula : string
The model formula to be fit to the imputed data sets. This
formula is for the 'analysis model'.
model_class : statsmodels model
The model to be fit to the imputed data sets. This model
class if for the 'analysis model'.
data : MICEData instance
MICEData object containing the data set for which
missing values will be imputed
n_skip : int
The number of imputed datasets to skip between consecutive
imputed datasets that are used for analysis.
init_kwds : dict-like
Dictionary of keyword arguments passed to the init method
of the analysis model.
fit_kwds : dict-like
Dictionary of keyword arguments passed to the fit method
of the analysis model.
Examples
--------
Run all MICE steps and obtain results:
%(mice_example_1)s
Obtain a sequence of fitted analysis models without combining
to obtain summary:
%(mice_example_2)s
""" % {'mice_example_1' : _mice_example_1,
'mice_example_2' : _mice_example_2}
def __init__(self, model_formula, model_class, data, n_skip=3,
init_kwds=None, fit_kwds=None):
self.model_formula = model_formula
self.model_class = model_class
self.n_skip = n_skip
self.data = data
self.results_list = []
self.init_kwds = init_kwds if init_kwds is not None else {}
self.fit_kwds = fit_kwds if fit_kwds is not None else {}
[docs] def next_sample(self):
"""
Perform one complete MICE iteration.
A single MICE iteration updates all missing values using their
respective imputation models, then fits the analysis model to
the imputed data.
Returns
-------
params : array-like
The model parameters for the analysis model.
Notes
-----
This function fits the analysis model and returns its
parameter estimate. The parameter vector is not stored by the
class and is not used in any subsequent calls to `combine`.
Use `fit` to run all MICE steps together and obtain summary
results.
The complete cycle of missing value imputation followed by
fitting the analysis model is repeated `n_skip + 1` times and
the analysis model parameters from the final fit are returned.
"""
# Impute missing values
self.data.update_all(self.n_skip + 1)
start_params = None
if len(self.results_list) > 0:
start_params = self.results_list[-1].params
# Fit the analysis model.
model = self.model_class.from_formula(self.model_formula,
self.data.data,
**self.init_kwds)
self.fit_kwds.update({"start_params": start_params})
result = model.fit(**self.fit_kwds)
return result
[docs] def fit(self, n_burnin=10, n_imputations=10):
"""
Fit a model using MICE.
Parameters
----------
n_burnin : int
The number of burn-in cycles to skip.
n_imputations : int
The number of data sets to impute
"""
# Run without fitting the analysis model
self.data.update_all(n_burnin)
for j in range(n_imputations):
result = self.next_sample()
self.results_list.append(result)
self.endog_names = result.model.endog_names
self.exog_names = result.model.exog_names
return self.combine()
[docs] def combine(self):
"""
Pools MICE imputation results.
This method can only be used after the `run` method has been
called. Returns estimates and standard errors of the analysis
model parameters.
Returns a MICEResults instance.
"""
# Extract a few things from the models that were fit to
# imputed data sets.
params_list = []
cov_within = 0.
scale_list = []
for results in self.results_list:
results_uw = results._results
params_list.append(results_uw.params)
cov_within += results_uw.cov_params()
scale_list.append(results.scale)
params_list = np.asarray(params_list)
scale_list = np.asarray(scale_list)
# The estimated parameters for the MICE analysis
params = params_list.mean(0)
# The average of the within-imputation covariances
cov_within /= len(self.results_list)
# The between-imputation covariance
cov_between = np.cov(params_list.T)
# The estimated covariance matrix for the MICE analysis
f = 1 + 1 / float(len(self.results_list))
cov_params = cov_within + f * cov_between
# Fraction of missing information
fmi = f * np.diag(cov_between) / np.diag(cov_params)
# Set up a results instance
scale = np.mean(scale_list)
results = MICEResults(self, params, cov_params / scale)
results.scale = scale
results.frac_miss_info = fmi
results.exog_names = self.exog_names
results.endog_names = self.endog_names
results.model_class = self.model_class
return results
class MICEResults(LikelihoodModelResults):
def __init__(self, model, params, normalized_cov_params):
super(MICEResults, self).__init__(model, params,
normalized_cov_params)
def summary(self, title=None, alpha=.05):
"""
Summarize the results of running MICE.
Parameters
-----------
title : string, optional
Title for the top table. If not None, then this replaces
the default title
alpha : float
Significance level for the confidence intervals
Returns
-------
smry : Summary instance
This holds the summary tables and text, which can be
printed or converted to various output formats.
"""
from statsmodels.iolib import summary2
from statsmodels.compat.collections import OrderedDict
smry = summary2.Summary()
float_format = "%8.3f"
info = OrderedDict()
info["Method:"] = "MICE"
info["Model:"] = self.model_class.__name__
info["Dependent variable:"] = self.endog_names
info["Sample size:"] = "%d" % self.model.data.data.shape[0]
info["Scale"] = "%.2f" % self.scale
info["Num. imputations"] = "%d" % len(self.model.results_list)
smry.add_dict(info, align='l', float_format=float_format)
param = summary2.summary_params(self, alpha=alpha)
param["FMI"] = self.frac_miss_info
smry.add_df(param, float_format=float_format)
smry.add_title(title=title, results=self)
return smry