"""
State Space Model
Author: Chad Fulton
License: Simplified-BSD
"""
from __future__ import division, absolute_import, print_function
from statsmodels.compat.python import long
import numpy as np
import pandas as pd
from scipy.stats import norm
from .kalman_smoother import KalmanSmoother, SmootherResults
from .kalman_filter import (KalmanFilter, FilterResults, INVERT_UNIVARIATE,
SOLVE_LU)
import statsmodels.tsa.base.tsa_model as tsbase
import statsmodels.base.wrapper as wrap
from statsmodels.tools.numdiff import (_get_epsilon, approx_hess_cs,
approx_fprime_cs, approx_fprime)
from statsmodels.tools.decorators import cache_readonly, resettable_cache
from statsmodels.tools.eval_measures import aic, bic, hqic
from statsmodels.tools.tools import pinv_extended, Bunch
from statsmodels.tools.sm_exceptions import PrecisionWarning
import statsmodels.genmod._prediction as pred
from statsmodels.genmod.families.links import identity
import warnings
[docs]class MLEModel(tsbase.TimeSeriesModel):
r"""
State space model for maximum likelihood estimation
Parameters
----------
endog : array_like
The observed time-series process :math:`y`
k_states : int
The dimension of the unobserved state process.
exog : array_like, optional
Array of exogenous regressors, shaped nobs x k. Default is no
exogenous regressors.
dates : array-like of datetime, optional
An array-like object of datetime objects. If a Pandas object is given
for endog, it is assumed to have a DateIndex.
freq : str, optional
The frequency of the time-series. A Pandas offset or 'B', 'D', 'W',
'M', 'A', or 'Q'. This is optional if dates are given.
**kwargs
Keyword arguments may be used to provide default values for state space
matrices or for Kalman filtering options. See `Representation`, and
`KalmanFilter` for more details.
Attributes
----------
ssm : KalmanFilter
Underlying state space representation.
Notes
-----
This class wraps the state space model with Kalman filtering to add in
functionality for maximum likelihood estimation. In particular, it adds
the concept of updating the state space representation based on a defined
set of parameters, through the `update` method or `updater` attribute (see
below for more details on which to use when), and it adds a `fit` method
which uses a numerical optimizer to select the parameters that maximize
the likelihood of the model.
The `start_params` `update` method must be overridden in the
child class (and the `transform` and `untransform` methods, if needed).
See Also
--------
MLEResults
statsmodels.tsa.statespace.kalman_filter.KalmanFilter
statsmodels.tsa.statespace.representation.Representation
"""
def __init__(self, endog, k_states, exog=None, dates=None, freq=None,
**kwargs):
# Initialize the model base
super(MLEModel, self).__init__(endog=endog, exog=exog,
dates=dates, freq=freq,
missing='none')
# Store kwargs to recreate model
self._init_kwargs = kwargs
# Prepared the endog array: C-ordered, shape=(nobs x k_endog)
self.endog, self.exog = self.prepare_data()
# Dimensions
self.nobs = self.endog.shape[0]
self.k_states = k_states
# Initialize the state-space representation
self.initialize_statespace(**kwargs)
[docs] def prepare_data(self):
"""
Prepare data for use in the state space representation
"""
endog = np.array(self.data.orig_endog, order='C')
exog = self.data.orig_exog
if exog is not None:
exog = np.array(exog)
# Base class may allow 1-dim data, whereas we need 2-dim
if endog.ndim == 1:
endog.shape = (endog.shape[0], 1) # this will be C-contiguous
return endog, exog
[docs] def initialize_statespace(self, **kwargs):
"""
Initialize the state space representation
Parameters
----------
**kwargs
Additional keyword arguments to pass to the state space class
constructor.
"""
# (Now self.endog is C-ordered and in long format (nobs x k_endog). To
# get F-ordered and in wide format just need to transpose)
endog = self.endog.T
# Instantiate the state space object
self.ssm = KalmanSmoother(endog.shape[0], self.k_states, **kwargs)
# Bind the data to the model
self.ssm.bind(endog)
# Other dimensions, now that `ssm` is available
self.k_endog = self.ssm.k_endog
def __setitem__(self, key, value):
return self.ssm.__setitem__(key, value)
def __getitem__(self, key):
return self.ssm.__getitem__(key)
[docs] def set_filter_method(self, filter_method=None, **kwargs):
"""
Set the filtering method
The filtering method controls aspects of which Kalman filtering
approach will be used.
Parameters
----------
filter_method : integer, optional
Bitmask value to set the filter method to. See notes for details.
**kwargs
Keyword arguments may be used to influence the filter method by
setting individual boolean flags. See notes for details.
Notes
-----
This method is rarely used. See the corresponding function in the
`KalmanFilter` class for details.
"""
self.ssm.set_filter_method(filter_method, **kwargs)
[docs] def set_inversion_method(self, inversion_method=None, **kwargs):
"""
Set the inversion method
The Kalman filter may contain one matrix inversion: that of the
forecast error covariance matrix. The inversion method controls how and
if that inverse is performed.
Parameters
----------
inversion_method : integer, optional
Bitmask value to set the inversion method to. See notes for
details.
**kwargs
Keyword arguments may be used to influence the inversion method by
setting individual boolean flags. See notes for details.
Notes
-----
This method is rarely used. See the corresponding function in the
`KalmanFilter` class for details.
"""
self.ssm.set_inversion_method(inversion_method, **kwargs)
[docs] def set_stability_method(self, stability_method=None, **kwargs):
"""
Set the numerical stability method
The Kalman filter is a recursive algorithm that may in some cases
suffer issues with numerical stability. The stability method controls
what, if any, measures are taken to promote stability.
Parameters
----------
stability_method : integer, optional
Bitmask value to set the stability method to. See notes for
details.
**kwargs
Keyword arguments may be used to influence the stability method by
setting individual boolean flags. See notes for details.
Notes
-----
This method is rarely used. See the corresponding function in the
`KalmanFilter` class for details.
"""
self.ssm.set_stability_method(stability_method, **kwargs)
[docs] def set_conserve_memory(self, conserve_memory=None, **kwargs):
"""
Set the memory conservation method
By default, the Kalman filter computes a number of intermediate
matrices at each iteration. The memory conservation options control
which of those matrices are stored.
Parameters
----------
conserve_memory : integer, optional
Bitmask value to set the memory conservation method to. See notes
for details.
**kwargs
Keyword arguments may be used to influence the memory conservation
method by setting individual boolean flags.
Notes
-----
This method is rarely used. See the corresponding function in the
`KalmanFilter` class for details.
"""
self.ssm.set_conserve_memory(conserve_memory, **kwargs)
[docs] def set_smoother_output(self, smoother_output=None, **kwargs):
"""
Set the smoother output
The smoother can produce several types of results. The smoother output
variable controls which are calculated and returned.
Parameters
----------
smoother_output : integer, optional
Bitmask value to set the smoother output to. See notes for details.
**kwargs
Keyword arguments may be used to influence the smoother output by
setting individual boolean flags.
Notes
-----
This method is rarely used. See the corresponding function in the
`KalmanSmoother` class for details.
"""
self.ssm.set_smoother_output(smoother_output, **kwargs)
[docs] def initialize_known(self, initial_state, initial_state_cov):
self.ssm.initialize_known(initial_state, initial_state_cov)
[docs] def initialize_approximate_diffuse(self, variance=None):
self.ssm.initialize_approximate_diffuse(variance)
[docs] def initialize_stationary(self):
self.ssm.initialize_stationary()
@property
def initialization(self):
return self.ssm.initialization
@property
def initial_variance(self):
return self.ssm.initial_variance
@initial_variance.setter
def initial_variance(self, value):
self.ssm.initial_variance = value
@property
def loglikelihood_burn(self):
return self.ssm.loglikelihood_burn
@loglikelihood_burn.setter
def loglikelihood_burn(self, value):
self.ssm.loglikelihood_burn = value
@property
def tolerance(self):
return self.ssm.tolerance
@tolerance.setter
def tolerance(self, value):
self.ssm.tolerance = value
[docs] def fit(self, start_params=None, transformed=True,
cov_type='opg', cov_kwds=None, method='lbfgs', maxiter=50,
full_output=1, disp=5, callback=None, return_params=False,
optim_score=None, optim_complex_step=None, optim_hessian=None,
**kwargs):
"""
Fits the model by maximum likelihood via Kalman filter.
Parameters
----------
start_params : array_like, optional
Initial guess of the solution for the loglikelihood maximization.
If None, the default is given by Model.start_params.
transformed : boolean, optional
Whether or not `start_params` is already transformed. Default is
True.
cov_type : str, optional
The `cov_type` keyword governs the method for calculating the
covariance matrix of parameter estimates. Can be one of:
- 'opg' for the outer product of gradient estimator
- 'oim' for the observed information matrix estimator, calculated
using the method of Harvey (1989)
- 'approx' for the observed information matrix estimator,
calculated using a numerical approximation of the Hessian matrix.
- 'robust' for an approximate (quasi-maximum likelihood) covariance
matrix that may be valid even in the presense of some
misspecifications. Intermediate calculations use the 'oim'
method.
- 'robust_approx' is the same as 'robust' except that the
intermediate calculations use the 'approx' method.
- 'none' for no covariance matrix calculation.
cov_kwds : dict or None, optional
A dictionary of arguments affecting covariance matrix computation.
**opg, oim, approx, robust, robust_approx**
- 'approx_complex_step' : boolean, optional - If True, numerical
approximations are computed using complex-step methods. If False,
numerical approximations are computed using finite difference
methods. Default is True.
- 'approx_centered' : boolean, optional - If True, numerical
approximations computed using finite difference methods use a
centered approximation. Default is False.
method : str, optional
The `method` determines which solver from `scipy.optimize`
is used, and it can be chosen from among the following strings:
- 'newton' for Newton-Raphson, 'nm' for Nelder-Mead
- 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS)
- 'lbfgs' for limited-memory BFGS with optional box constraints
- 'powell' for modified Powell's method
- 'cg' for conjugate gradient
- 'ncg' for Newton-conjugate gradient
- 'basinhopping' for global basin-hopping solver
The explicit arguments in `fit` are passed to the solver,
with the exception of the basin-hopping solver. Each
solver has several optional arguments that are not the same across
solvers. See the notes section below (or scipy.optimize) for the
available arguments and for the list of explicit arguments that the
basin-hopping solver supports.
maxiter : int, optional
The maximum number of iterations to perform.
full_output : boolean, optional
Set to True to have all available output in the Results object's
mle_retvals attribute. The output is dependent on the solver.
See LikelihoodModelResults notes section for more information.
disp : boolean, optional
Set to True to print convergence messages.
callback : callable callback(xk), optional
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
return_params : boolean, optional
Whether or not to return only the array of maximizing parameters.
Default is False.
optim_score : {'harvey', 'approx'} or None, optional
The method by which the score vector is calculated. 'harvey' uses
the method from Harvey (1989), 'approx' uses either finite
difference or complex step differentiation depending upon the
value of `optim_complex_step`, and None uses the built-in gradient
approximation of the optimizer. Default is None. This keyword is
only relevant if the optimization method uses the score.
optim_complex_step : bool, optional
Whether or not to use complex step differentiation when
approximating the score; if False, finite difference approximation
is used. Default is True. This keyword is only relevant if
`optim_score` is set to 'harvey' or 'approx'.
optim_hessian : {'opg','oim','approx'}, optional
The method by which the Hessian is numerically approximated. 'opg'
uses outer product of gradients, 'oim' uses the information
matrix formula from Harvey (1989), and 'approx' uses numerical
approximation. This keyword is only relevant if the
optimization method uses the Hessian matrix.
**kwargs
Additional keyword arguments to pass to the optimizer.
Returns
-------
MLEResults
See also
--------
statsmodels.base.model.LikelihoodModel.fit
MLEResults
"""
if start_params is None:
start_params = self.start_params
transformed = True
# Update the score method
if optim_score is None and method == 'lbfgs':
kwargs.setdefault('approx_grad', True)
kwargs.setdefault('epsilon', 1e-5)
elif optim_score is None:
optim_score = 'approx'
elif optim_score not in ['harvey', 'approx']:
raise NotImplementedError('Invalid method for calculating the'
' score.')
# Update the hessian method
if optim_hessian not in [None, 'opg', 'oim', 'approx']:
raise NotImplementedError('Invalid method for calculating the'
' Hessian.')
# Check for complex step differentiation
if optim_complex_step is None:
optim_complex_step = not self.ssm._complex_endog
elif optim_complex_step and self.ssm._complex_endog:
raise ValueError('Cannot use complex step derivatives when data'
' or parameters are complex.')
# Unconstrain the starting parameters
if transformed:
start_params = self.untransform_params(np.array(start_params))
# Maximum likelihood estimation
flags = {
'transformed': False,
'score_method': optim_score,
'approx_complex_step': optim_complex_step
}
if optim_hessian is not None:
flags['hessian_method'] = optim_hessian
fargs = (flags,)
mlefit = super(MLEModel, self).fit(start_params, method=method,
fargs=fargs,
maxiter=maxiter,
full_output=full_output,
disp=disp, callback=callback,
skip_hessian=True, **kwargs)
# Just return the fitted parameters if requested
if return_params:
return self.transform_params(mlefit.params)
# Otherwise construct the results class if desired
else:
res = self.smooth(mlefit.params, transformed=False,
cov_type=cov_type, cov_kwds=cov_kwds)
res.mlefit = mlefit
res.mle_retvals = mlefit.mle_retvals
res.mle_settings = mlefit.mle_settings
return res
[docs] def filter(self, params, transformed=True, complex_step=False,
cov_type=None, cov_kwds=None, return_ssm=False,
results_class=None, results_wrapper_class=None, **kwargs):
"""
Kalman filtering
Parameters
----------
params : array_like
Array of parameters at which to evaluate the loglikelihood
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
return_ssm : boolean,optional
Whether or not to return only the state space output or a full
results object. Default is to return a full results object.
cov_type : str, optional
See `MLEResults.fit` for a description of covariance matrix types
for results object.
cov_kwds : dict or None, optional
See `MLEResults.get_robustcov_results` for a description required
keywords for alternative covariance estimators
**kwargs
Additional keyword arguments to pass to the Kalman filter. See
`KalmanFilter.filter` for more details.
"""
params = np.array(params, ndmin=1)
if not transformed:
params = self.transform_params(params)
self.update(params, transformed=True, complex_step=complex_step)
# Save the parameter names
self.data.param_names = self.param_names
if complex_step:
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
# Get the state space output
result = self.ssm.filter(complex_step=complex_step, **kwargs)
# Wrap in a results object
if not return_ssm:
result_kwargs = {}
if cov_type is not None:
result_kwargs['cov_type'] = cov_type
if cov_kwds is not None:
result_kwargs['cov_kwds'] = cov_kwds
if results_class is None:
results_class = MLEResults
if results_wrapper_class is None:
results_wrapper_class = MLEResultsWrapper
result = results_wrapper_class(
results_class(self, params, result, **result_kwargs)
)
return result
[docs] def smooth(self, params, transformed=True, complex_step=False,
cov_type=None, cov_kwds=None, return_ssm=False,
results_class=None, results_wrapper_class=None, **kwargs):
"""
Kalman smoothing
Parameters
----------
params : array_like
Array of parameters at which to evaluate the loglikelihood
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
return_ssm : boolean,optional
Whether or not to return only the state space output or a full
results object. Default is to return a full results object.
cov_type : str, optional
See `MLEResults.fit` for a description of covariance matrix types
for results object.
cov_kwds : dict or None, optional
See `MLEResults.get_robustcov_results` for a description required
keywords for alternative covariance estimators
**kwargs
Additional keyword arguments to pass to the Kalman filter. See
`KalmanFilter.filter` for more details.
"""
params = np.array(params, ndmin=1)
if not transformed:
params = self.transform_params(params)
self.update(params, transformed=True, complex_step=complex_step)
# Save the parameter names
self.data.param_names = self.param_names
if complex_step:
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
# Get the state space output
result = self.ssm.smooth(complex_step=complex_step, **kwargs)
# Wrap in a results object
if not return_ssm:
result_kwargs = {}
if cov_type is not None:
result_kwargs['cov_type'] = cov_type
if cov_kwds is not None:
result_kwargs['cov_kwds'] = cov_kwds
if results_class is None:
results_class = MLEResults
if results_wrapper_class is None:
results_wrapper_class = MLEResultsWrapper
result = results_wrapper_class(
results_class(self, params, result, **result_kwargs)
)
return result
[docs] def loglike(self, params, *args, **kwargs):
"""
Loglikelihood evaluation
Parameters
----------
params : array_like
Array of parameters at which to evaluate the loglikelihood
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
kwargs
Additional keyword arguments to pass to the Kalman filter. See
`KalmanFilter.filter` for more details.
Notes
-----
[1]_ recommend maximizing the average likelihood to avoid scale issues;
this is done automatically by the base Model fit method.
References
----------
.. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999.
Statistical Algorithms for Models in State Space Using SsfPack 2.2.
Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023.
See Also
--------
update : modifies the internal state of the state space model to
reflect new params
"""
# We need to handle positional arguments in two ways, in case this was
# called by a Scipy optimization routine
if len(args) > 0:
argnames = ['transformed', 'complex_step']
# the fit() method will pass a dictionary
if isinstance(args[0], dict):
flags = args[0]
# otherwise, a user may have just used positional arguments...
else:
flags = dict(zip(argnames, args))
transformed = flags.get('transformed', True)
complex_step = flags.get('complex_step', True)
for name, value in flags.items():
if name in kwargs:
raise TypeError("loglike() got multiple values for keyword"
" argument '%s'" % name)
else:
transformed = kwargs.pop('transformed', True)
complex_step = kwargs.pop('complex_step', True)
if not transformed:
params = self.transform_params(params)
self.update(params, transformed=True, complex_step=complex_step)
if complex_step:
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
loglike = self.ssm.loglike(complex_step=complex_step, **kwargs)
# Koopman, Shephard, and Doornik recommend maximizing the average
# likelihood to avoid scale issues, but the averaging is done
# automatically in the base model `fit` method
return loglike
[docs] def loglikeobs(self, params, transformed=True, complex_step=False,
**kwargs):
"""
Loglikelihood evaluation
Parameters
----------
params : array_like
Array of parameters at which to evaluate the loglikelihood
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
**kwargs
Additional keyword arguments to pass to the Kalman filter. See
`KalmanFilter.filter` for more details.
Notes
-----
[1]_ recommend maximizing the average likelihood to avoid scale issues;
this is done automatically by the base Model fit method.
References
----------
.. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999.
Statistical Algorithms for Models in State Space Using SsfPack 2.2.
Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023.
See Also
--------
update : modifies the internal state of the Model to reflect new params
"""
if not transformed:
params = self.transform_params(params)
# If we're using complex-step differentiation, then we can't use
# Cholesky factorization
if complex_step:
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
self.update(params, transformed=True, complex_step=complex_step)
return self.ssm.loglikeobs(complex_step=complex_step, **kwargs)
def _forecasts_error_partial_derivatives(self, params, transformed=True,
approx_complex_step=None,
approx_centered=False,
res=None, **kwargs):
params = np.array(params, ndmin=1)
# We can't use complex-step differentiation with non-transformed
# parameters
if approx_complex_step is None:
approx_complex_step = transformed
if not transformed and approx_complex_step:
raise ValueError("Cannot use complex-step approximations to"
" calculate the observed_information_matrix"
" with untransformed parameters.")
# If we're using complex-step differentiation, then we can't use
# Cholesky factorization
if approx_complex_step:
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
# Get values at the params themselves
if res is None:
self.update(params, transformed=transformed,
complex_step=approx_complex_step)
res = self.ssm.filter(complex_step=approx_complex_step, **kwargs)
# Setup
n = len(params)
# Compute partial derivatives w.r.t. forecast error and forecast
# error covariance
partials_forecasts_error = (
np.zeros((self.k_endog, self.nobs, n))
)
partials_forecasts_error_cov = (
np.zeros((self.k_endog, self.k_endog, self.nobs, n))
)
if approx_complex_step:
epsilon = _get_epsilon(params, 2, None, n)
increments = np.identity(n) * 1j * epsilon
for i, ih in enumerate(increments):
self.update(params + ih, transformed=transformed,
complex_step=True)
_res = self.ssm.filter(complex_step=True, **kwargs)
partials_forecasts_error[:, :, i] = (
_res.forecasts_error.imag / epsilon[i]
)
partials_forecasts_error_cov[:, :, :, i] = (
_res.forecasts_error_cov.imag / epsilon[i]
)
elif not approx_centered:
epsilon = _get_epsilon(params, 2, None, n)
ei = np.zeros((n,), float)
for i in range(n):
ei[i] = epsilon[i]
self.update(params + ei, transformed=transformed,
complex_step=False)
_res = self.ssm.filter(complex_step=False, **kwargs)
partials_forecasts_error[:, :, i] = (
_res.forecasts_error - res.forecasts_error) / epsilon[i]
partials_forecasts_error_cov[:, :, :, i] = (
_res.forecasts_error_cov -
res.forecasts_error_cov) / epsilon[i]
ei[i] = 0.0
else:
epsilon = _get_epsilon(params, 3, None, n) / 2.
ei = np.zeros((n,), float)
for i in range(n):
ei[i] = epsilon[i]
self.update(params + ei, transformed=transformed,
complex_step=False)
_res1 = self.ssm.filter(complex_step=False, **kwargs)
self.update(params - ei, transformed=transformed,
complex_step=False)
_res2 = self.ssm.filter(complex_step=False, **kwargs)
partials_forecasts_error[:, :, i] = (
(_res1.forecasts_error - _res2.forecasts_error) /
(2 * epsilon[i]))
partials_forecasts_error_cov[:, :, :, i] = (
(_res1.forecasts_error_cov - _res2.forecasts_error_cov) /
(2 * epsilon[i]))
ei[i] = 0.0
return partials_forecasts_error, partials_forecasts_error_cov
def _score_complex_step(self, params, **kwargs):
# the default epsilon can be too small
# inversion_method = INVERT_UNIVARIATE | SOLVE_LU
epsilon = _get_epsilon(params, 2., None, len(params))
kwargs['transformed'] = True
kwargs['complex_step'] = True
return approx_fprime_cs(params, self.loglike, epsilon=epsilon,
kwargs=kwargs)
def _score_finite_difference(self, params, approx_centered=False,
**kwargs):
kwargs['transformed'] = True
return approx_fprime(params, self.loglike, kwargs=kwargs,
centered=approx_centered)
def _score_harvey(self, params, approx_complex_step=True, **kwargs):
score_obs = self._score_obs_harvey(
params, approx_complex_step=approx_complex_step, **kwargs)
return np.sum(score_obs, axis=0)
def _score_obs_harvey(self, params, approx_complex_step=True,
approx_centered=False, **kwargs):
"""
Score
Parameters
----------
params : array_like, optional
Array of parameters at which to evaluate the loglikelihood
function.
**kwargs
Additional keyword arguments to pass to the Kalman filter. See
`KalmanFilter.filter` for more details.
Notes
-----
This method is from Harvey (1989), section 3.4.5
References
----------
Harvey, Andrew C. 1990.
Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.
"""
params = np.array(params, ndmin=1)
n = len(params)
# Get values at the params themselves
self.update(params, transformed=True, complex_step=approx_complex_step)
if approx_complex_step:
kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU
res = self.ssm.filter(complex_step=approx_complex_step, **kwargs)
dtype = self.ssm.dtype
# Get forecasts error partials
partials_forecasts_error, partials_forecasts_error_cov = (
self._forecasts_error_partial_derivatives(
params, transformed=True,
approx_complex_step=approx_complex_step,
approx_centered=approx_centered, res=res, **kwargs))
# Compute partial derivatives w.r.t. likelihood function
partials = np.zeros((self.nobs, n))
k_endog = self.k_endog
for t in range(self.nobs):
for i in range(n):
inv_forecasts_error_cov = np.linalg.inv(
res.forecasts_error_cov[:, :, t])
partials[t, i] += np.trace(np.dot(
np.dot(inv_forecasts_error_cov,
partials_forecasts_error_cov[:, :, t, i]),
(np.eye(k_endog) -
np.dot(inv_forecasts_error_cov,
np.outer(res.forecasts_error[:, t],
res.forecasts_error[:, t])))))
# 2 * dv / di * F^{-1} v_t
# where x = F^{-1} v_t or F x = v
partials[t, i] += 2 * np.dot(
partials_forecasts_error[:, t, i],
np.dot(inv_forecasts_error_cov, res.forecasts_error[:, t]))
return -partials / 2.
[docs] def score(self, params, *args, **kwargs):
"""
Compute the score function at params.
Parameters
----------
params : array_like
Array of parameters at which to evaluate the score.
args
Additional positional arguments to the `loglike` method.
kwargs
Additional keyword arguments to the `loglike` method.
Returns
----------
score : array
Score, evaluated at `params`.
Notes
-----
This is a numerical approximation, calculated using first-order complex
step differentiation on the `loglike` method.
Both \*args and \*\*kwargs are necessary because the optimizer from
`fit` must call this function and only supports passing arguments via
\*args (for example `scipy.optimize.fmin_l_bfgs`).
"""
params = np.array(params, ndmin=1)
# We were given one positional argument if this was called by a Scipy
# optimization routine
if len(args) > 0:
argnames = ['transformed', 'method', 'approx_complex_step',
'approx_centered']
# the fit() method will pass a dictionary
if isinstance(args[0], dict):
flags = args[0]
flags['method'] = flags.get('score_method', 'approx')
# otherwise, a user may have just used positional arguments...
else:
flags = dict(zip(argnames, args))
transformed = flags.get('transformed', True)
method = flags.get('method', 'approx')
approx_complex_step = flags.get('approx_complex_step', None)
approx_centered = flags.get('approx_centered', True)
for name, value in flags.items():
if name in kwargs:
raise TypeError("score() got multiple values for keyword"
" argument '%s'" % name)
else:
transformed = kwargs.pop('transformed', True)
method = kwargs.pop('method', 'approx')
approx_complex_step = kwargs.pop('approx_complex_step', None)
approx_centered = kwargs.pop('approx_centered', False)
if approx_complex_step is None:
approx_complex_step = not self.ssm._complex_endog
if approx_complex_step and self.ssm._complex_endog:
raise ValueError('Cannot use complex step derivatives when data'
' or parameters are complex.')
if not transformed:
transform_score = self.transform_jacobian(params)
params = self.transform_params(params)
if method == 'harvey':
score = self._score_harvey(
params, approx_complex_step=approx_complex_step, **kwargs)
elif method == 'approx' and approx_complex_step:
score = self._score_complex_step(params, **kwargs)
elif method == 'approx':
score = self._score_finite_difference(
params, approx_centered=approx_centered, **kwargs)
else:
raise NotImplementedError('Invalid score method.')
if not transformed:
score = np.dot(transform_score, score)
return score
[docs] def score_obs(self, params, method='approx', transformed=True,
approx_complex_step=None, approx_centered=False, **kwargs):
"""
Compute the score per observation, evaluated at params
Parameters
----------
params : array_like
Array of parameters at which to evaluate the score.
**kwargs
Additional arguments to the `loglike` method.
Returns
----------
score : array (nobs, k_vars)
Score per observation, evaluated at `params`.
Notes
-----
This is a numerical approximation, calculated using first-order complex
step differentiation on the `loglikeobs` method.
"""
params = np.array(params, ndmin=1)
if not transformed and approx_complex_step:
raise ValueError("Cannot use complex-step approximations to"
" calculate the score at each observation"
" with untransformed parameters.")
if approx_complex_step is None:
approx_complex_step = not self.ssm._complex_endog
if approx_complex_step and self.ssm._complex_endog:
raise ValueError('Cannot use complex step derivatives when data'
' or parameters are complex.')
if method == 'harvey':
score = self._score_obs_harvey(
params, transformed=transformed,
approx_complex_step=approx_complex_step, **kwargs)
elif method == 'approx' and approx_complex_step:
# the default epsilon can be too small
epsilon = _get_epsilon(params, 2., None, len(params))
kwargs['complex_step'] = True
kwargs['transformed'] = True
score = approx_fprime_cs(params, self.loglikeobs, epsilon=epsilon,
kwargs=kwargs)
elif method == 'approx':
kwargs['transformed'] = transformed
score = approx_fprime(params, self.loglikeobs, kwargs=kwargs,
centered=approx_centered)
else:
raise NotImplementedError('Invalid scoreobs method.')
return score
[docs] def hessian(self, params, *args, **kwargs):
"""
Hessian matrix of the likelihood function, evaluated at the given
parameters
Parameters
----------
params : array_like
Array of parameters at which to evaluate the hessian.
args
Additional positional arguments to the `loglike` method.
kwargs
Additional keyword arguments to the `loglike` method.
Returns
-------
hessian : array
Hessian matrix evaluated at `params`
Notes
-----
This is a numerical approximation.
Both \*args and \*\*kwargs are necessary because the optimizer from
`fit` must call this function and only supports passing arguments via
\*args (for example `scipy.optimize.fmin_l_bfgs`).
"""
# We were given one positional argument if this was called by a Scipy
# optimization routine
if len(args) > 0:
argnames = ['transformed', 'method', 'approx_complex_step',
'approx_centered']
# the fit() method will pass a dictionary
if isinstance(args[0], dict):
flags = args[0]
flags['method'] = flags.get('hessian_method', 'approx')
# otherwise, a user may have just used positional arguments...
else:
flags = dict(zip(argnames, args))
transformed = flags.get('transformed', True)
method = flags.get('method', 'approx')
approx_complex_step = flags.get('approx_complex_step', None)
approx_centered = flags.get('approx_centered', True)
for name, value in flags.items():
if name in kwargs:
raise TypeError("hessian() got multiple values for keyword"
" argument '%s'" % name)
else:
transformed = kwargs.pop('transformed', False)
method = kwargs.pop('method', 'approx')
approx_complex_step = kwargs.pop('approx_complex_step', None)
approx_centered = kwargs.pop('approx_centered', False)
if not transformed and approx_complex_step:
raise ValueError("Cannot use complex-step approximations to"
" calculate the hessian with untransformed"
" parameters.")
if approx_complex_step is None:
approx_complex_step = not self.ssm._complex_endog
if approx_complex_step and self.ssm._complex_endog:
raise ValueError('Cannot use complex step derivatives when data'
' or parameters are complex.')
if method == 'oim':
hessian = self._hessian_oim(
params, transformed=transformed,
approx_complex_step=approx_complex_step,
approx_centered=approx_centered, **kwargs)
elif method == 'opg':
hessian = self._hessian_opg(
params, transformed=transformed,
approx_complex_step=approx_complex_step,
approx_centered=approx_centered, **kwargs)
elif method == 'approx' and approx_complex_step:
return self._hessian_complex_step(
params, transformed=transformed, **kwargs)
elif method == 'approx':
return self._hessian_finite_difference(
params, transformed=transformed,
approx_centered=approx_centered, **kwargs)
else:
raise NotImplementedError('Invalid Hessian calculation method.')
return hessian
def _hessian_oim(self, params, **kwargs):
"""
Hessian matrix computed using the Harvey (1989) information matrix
"""
return -self.observed_information_matrix(params, **kwargs)
def _hessian_opg(self, params, **kwargs):
"""
Hessian matrix computed using the outer product of gradients
information matrix
"""
return -self.opg_information_matrix(params, **kwargs)
def _hessian_finite_difference(self, params, approx_centered=False,
**kwargs):
params = np.array(params, ndmin=1)
warnings.warn('Calculation of the Hessian using finite differences'
' is usually subject to substantial approximation'
' errors.', PrecisionWarning)
if not approx_centered:
epsilon = _get_epsilon(params, 3, None, len(params))
else:
epsilon = _get_epsilon(params, 4, None, len(params)) / 2
hessian = approx_fprime(params, self._score_finite_difference,
epsilon=epsilon, kwargs=kwargs, centered=approx_centered)
return hessian / (self.nobs - self.ssm.loglikelihood_burn)
def _hessian_complex_step(self, params, **kwargs):
"""
Hessian matrix computed by second-order complex-step differentiation
on the `loglike` function.
"""
# the default epsilon can be too small
epsilon = _get_epsilon(params, 3., None, len(params))
kwargs['transformed'] = True
kwargs['complex_step'] = True
hessian = approx_hess_cs(
params, self.loglike, epsilon=epsilon, kwargs=kwargs)
return hessian / (self.nobs - self.ssm.loglikelihood_burn)
@property
def start_params(self):
"""
(array) Starting parameters for maximum likelihood estimation.
"""
if hasattr(self, '_start_params'):
return self._start_params
else:
raise NotImplementedError
@property
def param_names(self):
"""
(list of str) List of human readable parameter names (for parameters
actually included in the model).
"""
if hasattr(self, '_param_names'):
return self._param_names
else:
try:
names = ['param.%d' % i for i in range(len(self.start_params))]
except NotImplementedError:
names = []
return names
[docs] def update(self, params, transformed=True, complex_step=False):
"""
Update the parameters of the model
Parameters
----------
params : array_like
Array of new parameters.
transformed : boolean, optional
Whether or not `params` is already transformed. If set to False,
`transform_params` is called. Default is True.
Returns
-------
params : array_like
Array of parameters.
Notes
-----
Since Model is a base class, this method should be overridden by
subclasses to perform actual updating steps.
"""
params = np.array(params, ndmin=1)
if not transformed:
params = self.transform_params(params)
return params
[docs] def simulate(self, params, nsimulations, measurement_shocks=None,
state_shocks=None, initial_state=None):
r"""
Simulate a new time series following the state space model
Parameters
----------
params : array_like
Array of model parameters.
nsimulations : int
The number of observations to simulate. If the model is
time-invariant this can be any number. If the model is
time-varying, then this number must be less than or equal to the
number
measurement_shocks : array_like, optional
If specified, these are the shocks to the measurement equation,
:math:`\varepsilon_t`. If unspecified, these are automatically
generated using a pseudo-random number generator. If specified,
must be shaped `nsimulations` x `k_endog`, where `k_endog` is the
same as in the state space model.
state_shocks : array_like, optional
If specified, these are the shocks to the state equation,
:math:`\eta_t`. If unspecified, these are automatically
generated using a pseudo-random number generator. If specified,
must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the
same as in the state space model.
initial_state : array_like, optional
If specified, this is the state vector at time zero, which should
be shaped (`k_states` x 1), where `k_states` is the same as in the
state space model. If unspecified, but the model has been
initialized, then that initialization is used. If unspecified and
the model has not been initialized, then a vector of zeros is used.
Note that this is not included in the returned `simulated_states`
array.
Returns
-------
simulated_obs : array
An (nsimulations x k_endog) array of simulated observations.
"""
self.update(params)
simulated_obs, simulated_states = self.ssm.simulate(
nsimulations, measurement_shocks, state_shocks, initial_state)
# Simulated obs is (k_endog x nobs); don't want to squeeze in
# case of npredictions = 1
if simulated_obs.shape[1] == 1:
simulated_obs = simulated_obs[:, 0]
return simulated_obs
[docs] def impulse_responses(self, params, steps=1, impulse=0,
orthogonalized=False, cumulative=False, **kwargs):
"""
Impulse response function
Parameters
----------
params : array_like
Array of model parameters.
steps : int, optional
The number of steps for which impulse responses are calculated.
Default is 1. Note that the initial impulse is not counted as a
step, so if `steps=1`, the output will have 2 entries.
impulse : int or array_like
If an integer, the state innovation to pulse; must be between 0
and `k_posdef-1`. Alternatively, a custom impulse vector may be
provided; must be shaped `k_posdef x 1`.
orthogonalized : boolean, optional
Whether or not to perform impulse using orthogonalized innovations.
Note that this will also affect custum `impulse` vectors. Default
is False.
cumulative : boolean, optional
Whether or not to return cumulative impulse responses. Default is
False.
**kwargs
If the model is time-varying and `steps` is greater than the number
of observations, any of the state space representation matrices
that are time-varying must have updated values provided for the
out-of-sample steps.
For example, if `design` is a time-varying component, `nobs` is 10,
and `steps` is 15, a (`k_endog` x `k_states` x 5) matrix must be
provided with the new design matrix values.
Returns
-------
impulse_responses : array
Responses for each endogenous variable due to the impulse
given by the `impulse` argument. A (steps + 1 x k_endog) array.
Notes
-----
Intercepts in the measurement and state equation are ignored when
calculating impulse responses.
"""
self.update(params)
irfs = self.ssm.impulse_responses(
steps, impulse, orthogonalized, cumulative, **kwargs)
# IRF is (nobs x k_endog); don't want to squeeze in case of steps = 1
if irfs.shape[1] == 1:
irfs = irfs[:, 0]
return irfs
@classmethod
[docs]class MLEResults(tsbase.TimeSeriesModelResults):
r"""
Class to hold results from fitting a state space model.
Parameters
----------
model : MLEModel instance
The fitted model instance
params : array
Fitted parameters
filter_results : KalmanFilter instance
The underlying state space model and Kalman filter output
Attributes
----------
model : Model instance
A reference to the model that was fit.
filter_results : KalmanFilter instance
The underlying state space model and Kalman filter output
nobs : float
The number of observations used to fit the model.
params : array
The parameters of the model.
scale : float
This is currently set to 1.0 and not used by the model or its results.
See Also
--------
MLEModel
statsmodels.tsa.statespace.kalman_filter.FilterResults
statsmodels.tsa.statespace.representation.FrozenRepresentation
"""
def __init__(self, model, params, results, cov_type='opg',
cov_kwds=None, **kwargs):
self.data = model.data
tsbase.TimeSeriesModelResults.__init__(self, model, params,
normalized_cov_params=None,
scale=1.)
# Save the state space representation output
self.filter_results = results
if isinstance(results, SmootherResults):
self.smoother_results = results
else:
self.smoother_results = None
# Dimensions
self.nobs = model.nobs
# Setup covariance matrix notes dictionary
if not hasattr(self, 'cov_kwds'):
self.cov_kwds = {}
self.cov_type = cov_type
# Setup the cache
self._cache = resettable_cache()
# Handle covariance matrix calculation
if cov_kwds is None:
cov_kwds = {}
self._cov_approx_complex_step = (
cov_kwds.pop('approx_complex_step', True))
self._cov_approx_centered = cov_kwds.pop('approx_centered', False)
try:
self._rank = None
self._get_robustcov_results(cov_type=cov_type, use_self=True,
**cov_kwds)
except np.linalg.LinAlgError:
self._rank = 0
k_params = len(self.params)
self.cov_params_default = np.zeros((k_params, k_params)) * np.nan
self.cov_kwds['cov_type'] = (
'Covariance matrix could not be calculated: singular.'
' information matrix.')
# References of filter and smoother output
extra_arrays = [
'filtered_state', 'filtered_state_cov', 'predicted_state',
'predicted_state_cov', 'forecasts', 'forecasts_error',
'forecasts_error_cov', 'smoothed_state',
'smoothed_state_cov', 'smoothed_measurement_disturbance',
'smoothed_state_disturbance',
'smoothed_measurement_disturbance_cov',
'smoothed_state_disturbance_cov']
for name in extra_arrays:
setattr(self, name, getattr(self.filter_results, name, None))
# Handle removing data
self._data_attr_model = getattr(self, '_data_attr_model', [])
self._data_attr_model.extend(['ssm'])
self._data_attr.extend(extra_arrays)
self._data_attr.extend(['filter_results', 'smoother_results'])
self.data_in_cache = getattr(self, 'data_in_cache', [])
self.data_in_cache.extend([])
def _get_robustcov_results(self, cov_type='opg', **kwargs):
"""
Create new results instance with specified covariance estimator as
default
Note: creating new results instance currently not supported.
Parameters
----------
cov_type : string
the type of covariance matrix estimator to use. See Notes below
kwargs : depends on cov_type
Required or optional arguments for covariance calculation.
See Notes below.
Returns
-------
results : results instance
This method creates a new results instance with the requested
covariance as the default covariance of the parameters.
Inferential statistics like p-values and hypothesis tests will be
based on this covariance matrix.
Notes
-----
The following covariance types and required or optional arguments are
currently available:
- 'opg' for the outer product of gradient estimator
- 'oim' for the observed information matrix estimator, calculated
using the method of Harvey (1989)
- 'approx' for the observed information matrix estimator,
calculated using a numerical approximation of the Hessian matrix.
Uses complex step approximation by default, or uses finite
differences if `approx_complex_step=False` in the `cov_kwds`
dictionary.
- 'robust' for an approximate (quasi-maximum likelihood) covariance
matrix that may be valid even in the presense of some
misspecifications. Intermediate calculations use the 'oim'
method.
- 'robust_approx' is the same as 'robust' except that the
intermediate calculations use the 'approx' method.
- 'none' for no covariance matrix calculation.
"""
import statsmodels.stats.sandwich_covariance as sw
use_self = kwargs.pop('use_self', False)
if use_self:
res = self
else:
raise NotImplementedError
res = self.__class__(
self.model, self.params,
normalized_cov_params=self.normalized_cov_params,
scale=self.scale)
# Set the new covariance type
res.cov_type = cov_type
res.cov_kwds = {}
# Calculate the new covariance matrix
approx_complex_step = self._cov_approx_complex_step
if approx_complex_step:
approx_type_str = 'complex-step'
elif self._cov_approx_centered:
approx_type_str = 'centered finite differences'
else:
approx_type_str = 'finite differences'
k_params = len(self.params)
if k_params == 0:
res.cov_params_default = np.zeros((0, 0))
res._rank = 0
res.cov_kwds['description'] = (
'No parameters estimated.')
elif cov_type == 'custom':
res.cov_type = kwargs['custom_cov_type']
res.cov_params_default = kwargs['custom_cov_params']
res.cov_kwds['description'] = kwargs['custom_description']
res._rank = np.linalg.matrix_rank(res.cov_params_default)
elif cov_type == 'none':
res.cov_params_default = np.zeros((k_params, k_params)) * np.nan
res._rank = np.nan
res.cov_kwds['description'] = (
'Covariance matrix not calculated.')
elif self.cov_type == 'approx':
res.cov_params_default = res.cov_params_approx
res.cov_kwds['description'] = (
'Covariance matrix calculated using numerical (%s)'
' differentiation.' % approx_type_str)
elif self.cov_type == 'oim':
res.cov_params_default = res.cov_params_oim
res.cov_kwds['description'] = (
'Covariance matrix calculated using the observed information'
' matrix (%s) described in Harvey (1989).' % approx_type_str)
elif self.cov_type == 'opg':
res.cov_params_default = res.cov_params_opg
res.cov_kwds['description'] = (
'Covariance matrix calculated using the outer product of'
' gradients (%s).' % approx_type_str
)
elif self.cov_type == 'robust' or self.cov_type == 'robust_oim':
res.cov_params_default = res.cov_params_robust_oim
res.cov_kwds['description'] = (
'Quasi-maximum likelihood covariance matrix used for'
' robustness to some misspecifications; calculated using the'
' observed information matrix (%s) described in'
' Harvey (1989).' % approx_type_str)
elif self.cov_type == 'robust_approx':
res.cov_params_default = res.cov_params_robust
res.cov_kwds['description'] = (
'Quasi-maximum likelihood covariance matrix used for'
' robustness to some misspecifications; calculated using'
' numerical (%s) differentiation.' % approx_type_str)
else:
raise NotImplementedError('Invalid covariance matrix type.')
return res
@cache_readonly
[docs] def aic(self):
"""
(float) Akaike Information Criterion
"""
# return -2*self.llf + 2*self.params.shape[0]
return aic(self.llf, self.nobs, self.params.shape[0])
@cache_readonly
[docs] def bic(self):
"""
(float) Bayes Information Criterion
"""
# return -2*self.llf + self.params.shape[0]*np.log(self.nobs)
return bic(self.llf, self.nobs, self.params.shape[0])
def _cov_params_approx(self, approx_complex_step=True,
approx_centered=False):
nobs = (self.model.nobs - self.filter_results.loglikelihood_burn)
if approx_complex_step:
evaluated_hessian = self.model._hessian_complex_step(
self.params, transformed=True
)
else:
evaluated_hessian = self.model._hessian_finite_difference(
self.params, transformed=True,
approx_centered=approx_centered
)
self.model.update(self.params)
neg_cov, singular_values = pinv_extended(nobs * evaluated_hessian)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return -neg_cov
@cache_readonly
[docs] def cov_params_approx(self):
"""
(array) The variance / covariance matrix. Computed using the numerical
Hessian approximated by complex step or finite differences methods.
"""
return self._cov_params_approx(self._cov_approx_complex_step,
self._cov_approx_centered)
def _cov_params_oim(self, approx_complex_step=True,
approx_centered=False):
nobs = (self.model.nobs - self.filter_results.loglikelihood_burn)
cov_params, singular_values = pinv_extended(
nobs * self.model.observed_information_matrix(
self.params, transformed=True,
approx_complex_step=approx_complex_step,
approx_centered=approx_centered)
)
self.model.update(self.params)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return cov_params
@cache_readonly
[docs] def cov_params_oim(self):
"""
(array) The variance / covariance matrix. Computed using the method
from Harvey (1989).
"""
return self._cov_params_oim(self._cov_approx_complex_step,
self._cov_approx_centered)
def _cov_params_opg(self, approx_complex_step=True,
approx_centered=False):
nobs = (self.model.nobs - self.filter_results.loglikelihood_burn)
cov_params, singular_values = pinv_extended(
nobs * self.model.opg_information_matrix(
self.params, transformed=True,
approx_complex_step=approx_complex_step,
approx_centered=approx_centered)
)
self.model.update(self.params)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return cov_params
@cache_readonly
[docs] def cov_params_opg(self):
"""
(array) The variance / covariance matrix. Computed using the outer
product of gradients method.
"""
return self._cov_params_opg(self._cov_approx_complex_step,
self._cov_approx_centered)
@cache_readonly
[docs] def cov_params_robust(self):
"""
(array) The QMLE variance / covariance matrix. Alias for
`cov_params_robust_oim`
"""
return self.cov_params_robust_oim
def _cov_params_robust_oim(self, approx_complex_step=True,
approx_centered=False):
nobs = (self.model.nobs - self.filter_results.loglikelihood_burn)
cov_opg = self._cov_params_opg(approx_complex_step=approx_complex_step,
approx_centered=approx_centered)
evaluated_hessian = (
nobs * self.model.observed_information_matrix(
self.params, transformed=True,
approx_complex_step=approx_complex_step,
approx_centered=approx_centered)
)
self.model.update(self.params)
cov_params, singular_values = pinv_extended(
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)
)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return cov_params
@cache_readonly
[docs] def cov_params_robust_oim(self):
"""
(array) The QMLE variance / covariance matrix. Computed using the
method from Harvey (1989) as the evaluated hessian.
"""
return self._cov_params_robust_oim(self._cov_approx_complex_step,
self._cov_approx_centered)
def _cov_params_robust_approx(self, approx_complex_step=True,
approx_centered=False):
nobs = (self.model.nobs - self.filter_results.loglikelihood_burn)
cov_opg = self._cov_params_opg(approx_complex_step=approx_complex_step,
approx_centered=approx_centered)
if approx_complex_step:
evaluated_hessian = nobs * self.model._hessian_complex_step(
self.params, transformed=True
)
else:
evaluated_hessian = nobs * self.model._hessian_finite_difference(
self.params, transformed=True,
approx_centered=approx_centered
)
self.model.update(self.params)
cov_params, singular_values = pinv_extended(
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)
)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return cov_params
@cache_readonly
[docs] def cov_params_robust_approx(self):
"""
(array) The QMLE variance / covariance matrix. Computed using the
numerical Hessian as the evaluated hessian.
"""
return self._cov_params_robust_approx(self._cov_approx_complex_step,
self._cov_approx_centered)
@cache_readonly
[docs] def fittedvalues(self):
"""
(array) The predicted values of the model. An (nobs x k_endog) array.
"""
# This is a (k_endog x nobs array; don't want to squeeze in case of
# the corner case where nobs = 1 (mostly a concern in the predict or
# forecast functions, but here also to maintain consistency)
fittedvalues = self.filter_results.forecasts
if fittedvalues.shape[0] == 1:
fittedvalues = fittedvalues[0, :]
else:
fittedvalues = fittedvalues.T
return fittedvalues
@cache_readonly
[docs] def hqic(self):
"""
(float) Hannan-Quinn Information Criterion
"""
# return -2*self.llf + 2*np.log(np.log(self.nobs))*self.params.shape[0]
return hqic(self.llf, self.nobs, self.params.shape[0])
@cache_readonly
[docs] def llf_obs(self):
"""
(float) The value of the log-likelihood function evaluated at `params`.
"""
return self.model.loglikeobs(self.params)
@cache_readonly
[docs] def llf(self):
"""
(float) The value of the log-likelihood function evaluated at `params`.
"""
return self.llf_obs[self.filter_results.loglikelihood_burn:].sum()
@cache_readonly
[docs] def loglikelihood_burn(self):
"""
(float) The number of observations during which the likelihood is not
evaluated.
"""
return self.filter_results.loglikelihood_burn
@cache_readonly
[docs] def pvalues(self):
"""
(array) The p-values associated with the z-statistics of the
coefficients. Note that the coefficients are assumed to have a Normal
distribution.
"""
return norm.sf(np.abs(self.zvalues)) * 2
@cache_readonly
[docs] def resid(self):
"""
(array) The model residuals. An (nobs x k_endog) array.
"""
# This is a (k_endog x nobs array; don't want to squeeze in case of
# the corner case where nobs = 1 (mostly a concern in the predict or
# forecast functions, but here also to maintain consistency)
resid = self.filter_results.forecasts_error
if resid.shape[0] == 1:
resid = resid[0, :]
else:
resid = resid.T
return resid
@cache_readonly
[docs] def zvalues(self):
"""
(array) The z-statistics for the coefficients.
"""
return self.params / self.bse
[docs] def test_normality(self, method):
"""
Test for normality of standardized residuals.
Null hypothesis is normality.
Parameters
----------
method : string {'jarquebera'} or None
The statistical test for normality. Must be 'jarquebera' for
Jarque-Bera normality test. If None, an attempt is made to select
an appropriate test.
Notes
-----
If the first `d` loglikelihood values were burned (i.e. in the
specified model, `loglikelihood_burn=d`), then this test is calculated
ignoring the first `d` residuals.
In the case of missing data, the maintained hypothesis is that the
data are missing completely at random. This test is then run on the
standardized residuals excluding those corresponding to missing
observations.
See Also
--------
statsmodels.stats.stattools.jarque_bera
"""
if method is None:
method = 'jarquebera'
if method == 'jarquebera':
from statsmodels.stats.stattools import jarque_bera
d = self.loglikelihood_burn
output = []
for i in range(self.model.k_endog):
resid = self.filter_results.standardized_forecasts_error[i, d:]
mask = ~np.isnan(resid)
output.append(jarque_bera(resid[mask]))
else:
raise NotImplementedError('Invalid normality test method.')
return np.array(output)
[docs] def test_heteroskedasticity(self, method, alternative='two-sided',
use_f=True):
r"""
Test for heteroskedasticity of standardized residuals
Tests whether the sum-of-squares in the first third of the sample is
significantly different than the sum-of-squares in the last third
of the sample. Analogous to a Goldfeld-Quandt test.
Parameters
----------
method : string {'breakvar'} or None
The statistical test for heteroskedasticity. Must be 'breakvar'
for test of a break in the variance. If None, an attempt is
made to select an appropriate test.
alternative : string, 'increasing', 'decreasing' or 'two-sided'
This specifies the alternative for the p-value calculation. Default
is two-sided.
use_f : boolean, optional
Whether or not to compare against the asymptotic distribution
(chi-squared) or the approximate small-sample distribution (F).
Default is True (i.e. default is to compare against an F
distribution).
Returns
-------
output : array
An array with `(test_statistic, pvalue)` for each endogenous
variable. The array is then sized `(k_endog, 2)`. If the method is
called as `het = res.test_heteroskedasticity()`, then `het[0]` is
an array of size 2 corresponding to the first endogenous variable,
where `het[0][0]` is the test statistic, and `het[0][1]` is the
p-value.
Notes
-----
The null hypothesis is of no heteroskedasticity. That means different
things depending on which alternative is selected:
- Increasing: Null hypothesis is that the variance is not increasing
throughout the sample; that the sum-of-squares in the later
subsample is *not* greater than the sum-of-squares in the earlier
subsample.
- Decreasing: Null hypothesis is that the variance is not decreasing
throughout the sample; that the sum-of-squares in the earlier
subsample is *not* greater than the sum-of-squares in the later
subsample.
- Two-sided: Null hypothesis is that the variance is not changing
throughout the sample. Both that the sum-of-squares in the earlier
subsample is not greater than the sum-of-squares in the later
subsample *and* that the sum-of-squares in the later subsample is
not greater than the sum-of-squares in the earlier subsample.
For :math:`h = [T/3]`, the test statistic is:
.. math::
H(h) = \sum_{t=T-h+1}^T \tilde v_t^2
\Bigg / \sum_{t=d+1}^{d+1+h} \tilde v_t^2
where :math:`d` is the number of periods in which the loglikelihood was
burned in the parent model (usually corresponding to diffuse
initialization).
This statistic can be tested against an :math:`F(h,h)` distribution.
Alternatively, :math:`h H(h)` is asymptotically distributed according
to :math:`\chi_h^2`; this second test can be applied by passing
`asymptotic=True` as an argument.
See section 5.4 of [1]_ for the above formula and discussion, as well
as additional details.
TODO
- Allow specification of :math:`h`
References
----------
.. [1] Harvey, Andrew C. 1990.
Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.
"""
if method is None:
method = 'breakvar'
if method == 'breakvar':
# Store some values
squared_resid = self.filter_results.standardized_forecasts_error**2
d = self.loglikelihood_burn
test_statistics = []
p_values = []
for i in range(self.model.k_endog):
h = int(np.round((self.nobs - d) / 3))
numer_resid = squared_resid[i, -h:]
numer_resid = numer_resid[~np.isnan(numer_resid)]
numer_dof = len(numer_resid)
denom_resid = squared_resid[i, d:d+h]
denom_resid = denom_resid[~np.isnan(denom_resid)]
denom_dof = len(denom_resid)
if numer_dof < 2:
raise RuntimeError('Early subset of data has too few'
' non-missing observations to'
' calculate test statistic.')
if denom_dof < 2:
raise RuntimeError('Later subset of data has too few'
' non-missing observations to'
' calculate test statistic.')
test_statistic = np.sum(numer_resid) / np.sum(denom_resid)
# Setup functions to calculate the p-values
if use_f:
from scipy.stats import f
pval_lower = lambda test_statistics: f.cdf(
test_statistics, numer_dof, denom_dof)
pval_upper = lambda test_statistics: f.sf(
test_statistics, numer_dof, denom_dof)
else:
from scipy.stats import chi2
pval_lower = lambda test_statistics: chi2.cdf(
numer_dof * test_statistics, denom_dof)
pval_upper = lambda test_statistics: chi2.sf(
numer_dof * test_statistics, denom_dof)
# Calculate the one- or two-sided p-values
alternative = alternative.lower()
if alternative in ['i', 'inc', 'increasing']:
p_value = pval_upper(test_statistic)
elif alternative in ['d', 'dec', 'decreasing']:
test_statistic = 1. / test_statistic
p_value = pval_upper(test_statistic)
elif alternative in ['2', '2-sided', 'two-sided']:
p_value = 2 * np.minimum(
pval_lower(test_statistic),
pval_upper(test_statistic)
)
else:
raise ValueError('Invalid alternative.')
test_statistics.append(test_statistic)
p_values.append(p_value)
output = np.c_[test_statistics, p_values]
else:
raise NotImplementedError('Invalid heteroskedasticity test'
' method.')
return output
[docs] def test_serial_correlation(self, method, lags=None):
"""
Ljung-box test for no serial correlation of standardized residuals
Null hypothesis is no serial correlation.
Parameters
----------
method : string {'ljungbox','boxpierece'} or None
The statistical test for serial correlation. If None, an attempt is
made to select an appropriate test.
lags : None, int or array_like
If lags is an integer then this is taken to be the largest lag
that is included, the test result is reported for all smaller lag
length.
If lags is a list or array, then all lags are included up to the
largest lag in the list, however only the tests for the lags in the
list are reported.
If lags is None, then the default maxlag is 12*(nobs/100)^{1/4}
Returns
-------
output : array
An array with `(test_statistic, pvalue)` for each endogenous
variable and each lag. The array is then sized
`(k_endog, 2, lags)`. If the method is called as
`ljungbox = res.test_serial_correlation()`, then `ljungbox[i]`
holds the results of the Ljung-Box test (as would be returned by
`statsmodels.stats.diagnostic.acorr_ljungbox`) for the `i` th
endogenous variable.
Notes
-----
If the first `d` loglikelihood values were burned (i.e. in the
specified model, `loglikelihood_burn=d`), then this test is calculated
ignoring the first `d` residuals.
Output is nan for any endogenous variable which has missing values.
See Also
--------
statsmodels.stats.diagnostic.acorr_ljungbox
"""
if method is None:
method = 'ljungbox'
if method == 'ljungbox' or method == 'boxpierce':
from statsmodels.stats.diagnostic import acorr_ljungbox
d = self.loglikelihood_burn
output = []
# Default lags for acorr_ljungbox is 40, but may not always have
# that many observations
if lags is None:
lags = min(40, self.nobs - d - 1)
for i in range(self.model.k_endog):
results = acorr_ljungbox(
self.filter_results.standardized_forecasts_error[i][d:],
lags=lags, boxpierce=(method == 'boxpierce'))
if method == 'ljungbox':
output.append(results[0:2])
else:
output.append(results[2:])
output = np.c_[output]
else:
raise NotImplementedError('Invalid serial correlation test'
' method.')
return output
[docs] def get_prediction(self, start=None, end=None, dynamic=False, **kwargs):
"""
In-sample prediction and out-of-sample forecasting
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
dynamic : boolean, int, str, or datetime, optional
Integer offset relative to `start` at which to begin dynamic
prediction. Can also be an absolute date string to parse or a
datetime type (these are not interpreted as offsets).
Prior to this observation, true endogenous values will be used for
prediction; starting with this observation and continuing through
the end of prediction, forecasted endogenous values will be used
instead.
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. See `FilterResults.predict` for more details.
Returns
-------
forecast : array
Array of out of in-sample predictions and / or out-of-sample
forecasts. An (npredict x k_endog) array.
"""
if start is None:
start = 0
# Handle start and end (e.g. dates)
start = self.model._get_predict_start(start)
end, out_of_sample = self.model._get_predict_end(end)
# Handle string dynamic
dates = self.data.dates
if isinstance(dynamic, str):
if dates is None:
raise ValueError("Got a string for dynamic and dates is None")
dtdynamic = self.model._str_to_date(dynamic)
try:
dynamic_start = self.model._get_dates_loc(dates, dtdynamic)
dynamic = dynamic_start - start
except KeyError:
raise ValueError("Dynamic must be in dates. Got %s | %s" %
(str(dynamic), str(dtdynamic)))
# Perform the prediction
# This is a (k_endog x npredictions) array; don't want to squeeze in
# case of npredictions = 1
prediction_results = self.filter_results.predict(
start, end+out_of_sample+1, dynamic, **kwargs
)
# Return a new mlemodel.PredictionResults object
if self.data.dates is None:
row_labels = self.data.row_labels
else:
row_labels = self.data.predict_dates
return PredictionResultsWrapper(
PredictionResults(self, prediction_results, row_labels=row_labels))
[docs] def get_forecast(self, steps=1, **kwargs):
"""
Out-of-sample forecasts
Parameters
----------
steps : int, str, or datetime, optional
If an integer, the number of steps to forecast from the end of the
sample. Can also be a date string to parse or a datetime type.
However, if the dates index does not have a fixed frequency, steps
must be an integer. Default
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. See `FilterResults.predict` for more details.
Returns
-------
forecast : array
Array of out of sample forecasts. A (steps x k_endog) array.
"""
if isinstance(steps, (int, long)):
end = self.nobs+steps-1
else:
end = steps
return self.get_prediction(start=self.nobs, end=end, **kwargs)
[docs] def predict(self, start=None, end=None, dynamic=False, **kwargs):
"""
In-sample prediction and out-of-sample forecasting
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
dynamic : boolean, int, str, or datetime, optional
Integer offset relative to `start` at which to begin dynamic
prediction. Can also be an absolute date string to parse or a
datetime type (these are not interpreted as offsets).
Prior to this observation, true endogenous values will be used for
prediction; starting with this observation and continuing through
the end of prediction, forecasted endogenous values will be used
instead.
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. See `FilterResults.predict` for more details.
Returns
-------
forecast : array
Array of out of in-sample predictions and / or out-of-sample
forecasts. An (npredict x k_endog) array.
"""
# Perform the prediction
prediction_results = self.get_prediction(start, end, dynamic, **kwargs)
return prediction_results.predicted_mean
[docs] def forecast(self, steps=1, **kwargs):
"""
Out-of-sample forecasts
Parameters
----------
steps : int, str, or datetime, optional
If an integer, the number of steps to forecast from the end of the
sample. Can also be a date string to parse or a datetime type.
However, if the dates index does not have a fixed frequency, steps
must be an integer. Default
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. See `FilterResults.predict` for more details.
Returns
-------
forecast : array
Array of out of sample forecasts. A (steps x k_endog) array.
"""
if isinstance(steps, (int, long)):
end = self.nobs+steps-1
else:
end = steps
return self.predict(start=self.nobs, end=end, **kwargs)
[docs] def simulate(self, nsimulations, measurement_shocks=None,
state_shocks=None, initial_state=None):
r"""
Simulate a new time series following the state space model
Parameters
----------
nsimulations : int
The number of observations to simulate. If the model is
time-invariant this can be any number. If the model is
time-varying, then this number must be less than or equal to the
number
measurement_shocks : array_like, optional
If specified, these are the shocks to the measurement equation,
:math:`\varepsilon_t`. If unspecified, these are automatically
generated using a pseudo-random number generator. If specified,
must be shaped `nsimulations` x `k_endog`, where `k_endog` is the
same as in the state space model.
state_shocks : array_like, optional
If specified, these are the shocks to the state equation,
:math:`\eta_t`. If unspecified, these are automatically
generated using a pseudo-random number generator. If specified,
must be shaped `nsimulations` x `k_posdef` where `k_posdef` is the
same as in the state space model.
initial_state : array_like, optional
If specified, this is the state vector at time zero, which should
be shaped (`k_states` x 1), where `k_states` is the same as in the
state space model. If unspecified, but the model has been
initialized, then that initialization is used. If unspecified and
the model has not been initialized, then a vector of zeros is used.
Note that this is not included in the returned `simulated_states`
array.
Returns
-------
simulated_obs : array
An (nsimulations x k_endog) array of simulated observations.
"""
return self.model.simulate(self.params, nsimulations,
measurement_shocks, state_shocks,
initial_state)
[docs] def impulse_responses(self, steps=1, impulse=0, orthogonalized=False,
cumulative=False, **kwargs):
"""
Impulse response function
Parameters
----------
steps : int, optional
The number of steps for which impulse responses are calculated.
Default is 1. Note that the initial impulse is not counted as a
step, so if `steps=1`, the output will have 2 entries.
impulse : int or array_like
If an integer, the state innovation to pulse; must be between 0
and `k_posdef-1`. Alternatively, a custom impulse vector may be
provided; must be shaped `k_posdef x 1`.
orthogonalized : boolean, optional
Whether or not to perform impulse using orthogonalized innovations.
Note that this will also affect custum `impulse` vectors. Default
is False.
cumulative : boolean, optional
Whether or not to return cumulative impulse responses. Default is
False.
**kwargs
If the model is time-varying and `steps` is greater than the number
of observations, any of the state space representation matrices
that are time-varying must have updated values provided for the
out-of-sample steps.
For example, if `design` is a time-varying component, `nobs` is 10,
and `steps` is 15, a (`k_endog` x `k_states` x 5) matrix must be
provided with the new design matrix values.
Returns
-------
impulse_responses : array
Responses for each endogenous variable due to the impulse
given by the `impulse` argument. A (steps + 1 x k_endog) array.
Notes
-----
Intercepts in the measurement and state equation are ignored when
calculating impulse responses.
"""
return self.model.impulse_responses(self.params, steps, impulse,
orthogonalized, cumulative,
**kwargs)
[docs] def plot_diagnostics(self, variable=0, lags=10, fig=None, figsize=None):
"""
Diagnostic plots for standardized residuals of one endogenous variable
Parameters
----------
variable : integer, optional
Index of the endogenous variable for which the diagnostic plots
should be created. Default is 0.
lags : integer, optional
Number of lags to include in the correlogram. Default is 10.
fig : Matplotlib Figure instance, optional
If given, subplots are created in this figure instead of in a new
figure. Note that the 2x2 grid will be created in the provided
figure using `fig.add_subplot()`.
figsize : tuple, optional
If a figure is created, this argument allows specifying a size.
The tuple is (width, height).
Notes
-----
Produces a 2x2 plot grid with the following plots (ordered clockwise
from top left):
1. Standardized residuals over time
2. Histogram plus estimated density of standardized residulas, along
with a Normal(0,1) density plotted for reference.
3. Normal Q-Q plot, with Normal reference line.
4. Correlogram
See Also
--------
statsmodels.graphics.gofplots.qqplot
statsmodels.graphics.tsaplots.plot_acf
"""
from statsmodels.graphics.utils import _import_mpl, create_mpl_fig
_import_mpl()
fig = create_mpl_fig(fig, figsize)
# Eliminate residuals associated with burned likelihoods
d = self.loglikelihood_burn
resid = self.filter_results.standardized_forecasts_error[variable, d:]
# Top-left: residuals vs time
ax = fig.add_subplot(221)
if hasattr(self.data, 'dates') and self.data.dates is not None:
x = self.data.dates[self.loglikelihood_burn:]._mpl_repr()
else:
x = np.arange(len(resid))
ax.plot(x, resid)
ax.hlines(0, x[0], x[-1], alpha=0.5)
ax.set_xlim(x[0], x[-1])
ax.set_title('Standardized residual')
# Top-right: histogram, Gaussian kernel density, Normal density
# Can only do histogram and Gaussian kernel density on the non-null
# elements
resid_nonmissing = resid[~(np.isnan(resid))]
ax = fig.add_subplot(222)
ax.hist(resid_nonmissing, normed=True, label='Hist')
from scipy.stats import gaussian_kde, norm
kde = gaussian_kde(resid_nonmissing)
xlim = (-1.96*2, 1.96*2)
x = np.linspace(xlim[0], xlim[1])
ax.plot(x, kde(x), label='KDE')
ax.plot(x, norm.pdf(x), label='N(0,1)')
ax.set_xlim(xlim)
ax.legend()
ax.set_title('Histogram plus estimated density')
# Bottom-left: QQ plot
ax = fig.add_subplot(223)
from statsmodels.graphics.gofplots import qqplot
qqplot(resid, line='s', ax=ax)
ax.set_title('Normal Q-Q')
# Bottom-right: Correlogram
ax = fig.add_subplot(224)
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(resid, ax=ax, lags=lags)
ax.set_title('Correlogram')
ax.set_ylim(-1, 1)
return fig
[docs] def summary(self, alpha=.05, start=None, title=None, model_name=None,
display_params=True):
"""
Summarize the Model
Parameters
----------
alpha : float, optional
Significance level for the confidence intervals. Default is 0.05.
start : int, optional
Integer of the start observation. Default is 0.
model_name : string
The name of the model used. Default is to use model class name.
Returns
-------
summary : Summary instance
This holds the summary table and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary
"""
from statsmodels.iolib.summary import Summary
# Model specification results
model = self.model
if title is None:
title = 'Statespace Model Results'
if start is None:
start = 0
if self.data.dates is not None:
dates = self.data.dates
d = dates[start]
sample = ['%02d-%02d-%02d' % (d.month, d.day, d.year)]
d = dates[-1]
sample += ['- ' + '%02d-%02d-%02d' % (d.month, d.day, d.year)]
else:
sample = [str(start), ' - ' + str(self.model.nobs)]
# Standardize the model name as a list of str
if model_name is None:
model_name = model.__class__.__name__
# Diagnostic tests results
try:
het = self.test_heteroskedasticity(method='breakvar')
except:
het = np.array([[np.nan]*2])
try:
lb = self.test_serial_correlation(method='ljungbox')
except:
lb = np.array([[np.nan]*2]).reshape(1, 2, 1)
try:
jb = self.test_normality(method='jarquebera')
except:
jb = np.array([[np.nan]*4])
# Create the tables
if not isinstance(model_name, list):
model_name = [model_name]
top_left = [('Dep. Variable:', None)]
top_left.append(('Model:', [model_name[0]]))
for i in range(1, len(model_name)):
top_left.append(('', ['+ ' + model_name[i]]))
top_left += [
('Date:', None),
('Time:', None),
('Sample:', [sample[0]]),
('', [sample[1]])
]
top_right = [
('No. Observations:', [self.model.nobs]),
('Log Likelihood', ["%#5.3f" % self.llf]),
('AIC', ["%#5.3f" % self.aic]),
('BIC', ["%#5.3f" % self.bic]),
('HQIC', ["%#5.3f" % self.hqic])
]
if hasattr(self, 'cov_type'):
top_left.append(('Covariance Type:', [self.cov_type]))
format_str = lambda array: [
', '.join(['{0:.2f}'.format(i) for i in array])
]
diagn_left = [('Ljung-Box (Q):', format_str(lb[:, 0, -1])),
('Prob(Q):', format_str(lb[:, 1, -1])),
('Heteroskedasticity (H):', format_str(het[:, 0])),
('Prob(H) (two-sided):', format_str(het[:, 1]))
]
diagn_right = [('Jarque-Bera (JB):', format_str(jb[:, 0])),
('Prob(JB):', format_str(jb[:, 1])),
('Skew:', format_str(jb[:, 2])),
('Kurtosis:', format_str(jb[:, 3]))
]
summary = Summary()
summary.add_table_2cols(self, gleft=top_left, gright=top_right,
title=title)
if len(self.params) > 0 and display_params:
summary.add_table_params(self, alpha=alpha,
xname=self.data.param_names, use_t=False)
summary.add_table_2cols(self, gleft=diagn_left, gright=diagn_right,
title="")
# Add warnings/notes, added to text format only
etext = []
if hasattr(self, 'cov_type') and 'description' in self.cov_kwds:
etext.append(self.cov_kwds['description'])
if self._rank < len(self.params):
etext.append("Covariance matrix is singular or near-singular,"
" with condition number %6.3g. Standard errors may be"
" unstable." % np.linalg.cond(self.cov_params()))
if etext:
etext = ["[{0}] {1}".format(i + 1, text)
for i, text in enumerate(etext)]
etext.insert(0, "Warnings:")
summary.add_extra_txt(etext)
return summary
class MLEResultsWrapper(wrap.ResultsWrapper):
_attrs = {
'zvalues': 'columns',
'cov_params_approx': 'cov',
'cov_params_default': 'cov',
'cov_params_oim': 'cov',
'cov_params_opg': 'cov',
'cov_params_robust': 'cov',
'cov_params_robust_approx': 'cov',
'cov_params_robust_oim': 'cov',
}
_wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs,
_attrs)
_methods = {
'forecast': 'dates',
'simulate': 'ynames',
'impulse_responses': 'ynames'
}
_wrap_methods = wrap.union_dicts(
tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods)
wrap.populate_wrapper(MLEResultsWrapper, MLEResults)
class PredictionResults(pred.PredictionResults):
"""
Parameters
----------
prediction_results : kalman_filter.PredictionResults instance
Results object from prediction after fitting or filtering a state space
model.
row_labels : iterable
Row labels for the predicted data.
Attributes
----------
"""
def __init__(self, model, prediction_results, row_labels=None):
if model.model.k_endog == 1:
endog = pd.Series(prediction_results.endog[:, 0],
name=model.model.endog_names)
else:
endog = pd.DataFrame(prediction_results.endog.T,
columns=model.model.endog_names)
self.model = Bunch(data=model.data.__class__(
endog=endog,
predict_dates=getattr(model.data, 'predict_dates', None)),
)
self.prediction_results = prediction_results
# Get required values
predicted_mean = self.prediction_results.forecasts
if predicted_mean.shape[0] == 1:
predicted_mean = predicted_mean[0, :]
else:
predicted_mean = predicted_mean.transpose()
var_pred_mean = self.prediction_results.forecasts_error_cov
if var_pred_mean.shape[0] == 1:
var_pred_mean = var_pred_mean[0, 0, :]
else:
var_pred_mean = var_pred_mean.transpose()
# Initialize
super(PredictionResults, self).__init__(predicted_mean, var_pred_mean,
dist='norm',
row_labels=row_labels,
link=identity())
@property
def se_mean(self):
if self.var_pred_mean.ndim == 1:
se_mean = np.sqrt(self.var_pred_mean)
else:
se_mean = np.sqrt(self.var_pred_mean.T.diagonal())
return se_mean
def conf_int(self, method='endpoint', alpha=0.05, **kwds):
# TODO: this performs metadata wrapping, and that should be handled
# by attach_* methods. However, they don't currently support
# this use case.
conf_int = super(PredictionResults, self).conf_int(
method, alpha, **kwds)
# Create a dataframe
if self.model.data.predict_dates is not None:
conf_int = pd.DataFrame(conf_int,
index=self.model.data.predict_dates)
else:
conf_int = pd.DataFrame(conf_int)
# Attach the endog names
ynames = self.model.data.ynames
if not type(ynames) == list:
ynames = [ynames]
names = (['lower %s' % name for name in ynames] +
['upper %s' % name for name in ynames])
conf_int.columns = names
return conf_int
def summary_frame(self, endog=0, what='all', alpha=0.05):
# TODO: finish and cleanup
# import pandas as pd
from statsmodels.compat.collections import OrderedDict
# ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split
ci_mean = self.conf_int(alpha=alpha).values
to_include = OrderedDict()
if self.predicted_mean.ndim == 1:
yname = self.model.data.ynames
to_include['mean'] = self.predicted_mean
to_include['mean_se'] = self.se_mean
k_endog = 1
else:
yname = self.model.data.ynames[endog]
to_include['mean'] = self.predicted_mean[:, endog]
to_include['mean_se'] = self.se_mean[:, endog]
k_endog = self.predicted_mean.shape[1]
to_include['mean_ci_lower'] = ci_mean[:, endog]
to_include['mean_ci_upper'] = ci_mean[:, k_endog + endog]
self.table = to_include
# OrderedDict doesn't work to preserve sequence
# pandas dict doesn't handle 2d_array
# data = np.column_stack(list(to_include.values()))
# names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
res.columns.name = yname
return res
class PredictionResultsWrapper(wrap.ResultsWrapper):
_attrs = {
'predicted_mean': 'dates',
'se_mean': 'dates',
't_values': 'dates',
}
_wrap_attrs = wrap.union_dicts(_attrs)
_methods = {}
_wrap_methods = wrap.union_dicts(_methods)
wrap.populate_wrapper(PredictionResultsWrapper, PredictionResults)