Source code for statsmodels.tsa.vector_ar.var_model

"""
Vector Autoregression (VAR) processes

References
----------
Lutkepohl (2005) New Introduction to Multiple Time Series Analysis
"""

from __future__ import division, print_function
from statsmodels.compat.python import (range, lrange, string_types, StringIO, iteritems,
                                cStringIO)

from collections import defaultdict

import numpy as np
import numpy.linalg as npl
from numpy.linalg import cholesky as chol, solve
import scipy.stats as stats
import scipy.linalg as L

from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.tools import chain_dot
from statsmodels.tools.linalg import logdet_symm
from statsmodels.tsa.tsatools import vec, unvec

from statsmodels.tsa.vector_ar.irf import IRAnalysis
from statsmodels.tsa.vector_ar.output import VARSummary

import statsmodels.tsa.tsatools as tsa
import statsmodels.tsa.vector_ar.output as output
import statsmodels.tsa.vector_ar.plotting as plotting
import statsmodels.tsa.vector_ar.util as util
import statsmodels.tsa.base.tsa_model as tsbase
import statsmodels.base.wrapper as wrap

mat = np.array

#-------------------------------------------------------------------------------
# VAR process routines

def ma_rep(coefs, maxn=10):
    r"""
    MA(\infty) representation of VAR(p) process

    Parameters
    ----------
    coefs : ndarray (p x k x k)
    maxn : int
        Number of MA matrices to compute

    Notes
    -----
    VAR(p) process as

    .. math:: y_t = A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t

    can be equivalently represented as

    .. math:: y_t = \mu + \sum_{i=0}^\infty \Phi_i u_{t-i}

    e.g. can recursively compute the \Phi_i matrices with \Phi_0 = I_k

    Returns
    -------
    phis : ndarray (maxn + 1 x k x k)
    """
    p, k, k = coefs.shape
    phis = np.zeros((maxn+1, k, k))
    phis[0] = np.eye(k)

    # recursively compute Phi matrices
    for i in range(1, maxn + 1):
        for j in range(1, i+1):
            if j > p:
                break

            phis[i] += np.dot(phis[i-j], coefs[j-1])

    return phis

def is_stable(coefs, verbose=False):
    """
    Determine stability of VAR(p) system by examining the eigenvalues of the
    VAR(1) representation

    Parameters
    ----------
    coefs : ndarray (p x k x k)

    Returns
    -------
    is_stable : bool
    """
    A_var1 = util.comp_matrix(coefs)
    eigs = np.linalg.eigvals(A_var1)

    if verbose:
        print('Eigenvalues of VAR(1) rep')
        for val in np.abs(eigs):
            print(val)

    return (np.abs(eigs) <= 1).all()

def var_acf(coefs, sig_u, nlags=None):
    """
    Compute autocovariance function ACF_y(h) up to nlags of stable VAR(p)
    process

    Parameters
    ----------
    coefs : ndarray (p x k x k)
        Coefficient matrices A_i
    sig_u : ndarray (k x k)
        Covariance of white noise process u_t
    nlags : int, optional
        Defaults to order p of system

    Notes
    -----
    Ref: Lutkepohl p.28-29

    Returns
    -------
    acf : ndarray, (p, k, k)
    """
    p, k, _ = coefs.shape
    if nlags is None:
        nlags = p

    # p x k x k, ACF for lags 0, ..., p-1
    result = np.zeros((nlags + 1, k, k))
    result[:p] = _var_acf(coefs, sig_u)

    # yule-walker equations
    for h in range(p, nlags + 1):
        # compute ACF for lag=h
        # G(h) = A_1 G(h-1) + ... + A_p G(h-p)

        for j in range(p):
            result[h] += np.dot(coefs[j], result[h-j-1])

    return result

def _var_acf(coefs, sig_u):
    """
    Compute autocovariance function ACF_y(h) for h=1,...,p

    Notes
    -----
    Lutkepohl (2005) p.29
    """
    p, k, k2 = coefs.shape
    assert(k == k2)

    A = util.comp_matrix(coefs)
    # construct VAR(1) noise covariance
    SigU = np.zeros((k*p, k*p))
    SigU[:k,:k] = sig_u

    # vec(ACF) = (I_(kp)^2 - kron(A, A))^-1 vec(Sigma_U)
    vecACF = L.solve(np.eye((k*p)**2) - np.kron(A, A), vec(SigU))

    acf = unvec(vecACF)
    acf = acf[:k].T.reshape((p, k, k))

    return acf

def forecast(y, coefs, intercept, steps):
    """
    Produce linear MSE forecast

    Parameters
    ----------
    y :
    coefs :
    intercept :
    steps :

    Returns
    -------
    forecasts : ndarray (steps x neqs)

    Notes
    -----
    Lutkepohl p. 37

    Also used by DynamicVAR class
    """
    p = len(coefs)
    k = len(coefs[0])
    # initial value
    forcs = np.zeros((steps, k)) + intercept

    # h=0 forecast should be latest observation
    # forcs[0] = y[-1]

    # make indices easier to think about
    for h in range(1, steps + 1):
        # y_t(h) = intercept + sum_1^p A_i y_t_(h-i)
        f = forcs[h - 1]
        for i in range(1, p + 1):
            # slightly hackish
            if h - i <= 0:
                # e.g. when h=1, h-1 = 0, which is y[-1]
                prior_y = y[h - i - 1]
            else:
                # e.g. when h=2, h-1=1, which is forcs[0]
                prior_y = forcs[h - i - 1]

            # i=1 is coefs[0]
            f = f + np.dot(coefs[i - 1], prior_y)
        forcs[h - 1] = f

    return forcs

def forecast_cov(ma_coefs, sig_u, steps):
    """
    Compute theoretical forecast error variance matrices

    Parameters
    ----------

    Returns
    -------
    forc_covs : ndarray (steps x neqs x neqs)
    """
    k = len(sig_u)
    forc_covs = np.zeros((steps, k, k))

    prior = np.zeros((k, k))
    for h in range(steps):
        # Sigma(h) = Sigma(h-1) + Phi Sig_u Phi'
        phi = ma_coefs[h]
        var = chain_dot(phi, sig_u, phi.T)
        forc_covs[h] = prior = prior + var

    return forc_covs

def var_loglike(resid, omega, nobs):
    r"""
    Returns the value of the VAR(p) log-likelihood.

    Parameters
    ----------
    resid : ndarray (T x K)
    omega : ndarray
        Sigma hat matrix.  Each element i,j is the average product of the
        OLS residual for variable i and the OLS residual for variable j or
        np.dot(resid.T,resid)/nobs.  There should be no correction for the
        degrees of freedom.
    nobs : int

    Returns
    -------
    llf : float
        The value of the loglikelihood function for a VAR(p) model

    Notes
    -----
    The loglikelihood function for the VAR(p) is

    .. math::

        -\left(\frac{T}{2}\right)
        \left(\ln\left|\Omega\right|-K\ln\left(2\pi\right)-K\right)
    """
    logdet = logdet_symm(np.asarray(omega))
    neqs = len(omega)
    part1 = - (nobs * neqs / 2) * np.log(2 * np.pi)
    part2 = - (nobs / 2) * (logdet + neqs)
    return part1 + part2

def _reordered(self, order):
    #Create new arrays to hold rearranged results from .fit()
    endog = self.endog
    endog_lagged = self.endog_lagged
    params = self.params
    sigma_u = self.sigma_u
    names = self.names
    k_ar = self.k_ar
    endog_new = np.zeros([np.size(endog,0),np.size(endog,1)])
    endog_lagged_new = np.zeros([np.size(endog_lagged,0), np.size(endog_lagged,1)])
    params_new_inc, params_new = [np.zeros([np.size(params,0), np.size(params,1)])
                                  for i in range(2)]
    sigma_u_new_inc, sigma_u_new = [np.zeros([np.size(sigma_u,0), np.size(sigma_u,1)])
                                    for i in range(2)]
    num_end = len(self.params[0])
    names_new = []

    #Rearrange elements and fill in new arrays
    k = self.k_trend
    for i, c in enumerate(order):
        endog_new[:,i] = self.endog[:,c]
        if k > 0:
            params_new_inc[0,i] = params[0,i]
            endog_lagged_new[:,0] = endog_lagged[:,0]
        for j in range(k_ar):
            params_new_inc[i+j*num_end+k,:] = self.params[c+j*num_end+k,:]
            endog_lagged_new[:,i+j*num_end+k] = endog_lagged[:,c+j*num_end+k]
        sigma_u_new_inc[i,:] = sigma_u[c,:]
        names_new.append(names[c])
    for i, c in enumerate(order):
        params_new[:,i] = params_new_inc[:,c]
        sigma_u_new[:,i] = sigma_u_new_inc[:,c]

    return VARResults(endog=endog_new, endog_lagged=endog_lagged_new,
                      params=params_new, sigma_u=sigma_u_new,
                      lag_order=self.k_ar, model=self.model,
                      trend='c', names=names_new, dates=self.dates)

#-------------------------------------------------------------------------------
# VARProcess class: for known or unknown VAR process

[docs]class VAR(tsbase.TimeSeriesModel): r""" Fit VAR(p) process and do lag order selection .. math:: y_t = A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t Parameters ---------- endog : array-like 2-d endogenous response variable. The independent variable. dates : array-like must match number of rows of endog References ---------- Lutkepohl (2005) New Introduction to Multiple Time Series Analysis """ def __init__(self, endog, dates=None, freq=None, missing='none'): super(VAR, self).__init__(endog, None, dates, freq, missing=missing) if self.endog.ndim == 1: raise ValueError("Only gave one variable to VAR") self.y = self.endog #keep alias for now self.neqs = self.endog.shape[1] def _get_predict_start(self, start, k_ar): if start is None: start = k_ar return super(VAR, self)._get_predict_start(start)
[docs] def predict(self, params, start=None, end=None, lags=1, trend='c'): """ Returns in-sample predictions or forecasts """ start = self._get_predict_start(start, lags) end, out_of_sample = self._get_predict_end(end) if end < start: raise ValueError("end is before start") if end == start + out_of_sample: return np.array([]) k_trend = util.get_trendorder(trend) k = self.neqs k_ar = lags predictedvalues = np.zeros((end + 1 - start + out_of_sample, k)) if k_trend != 0: intercept = params[:k_trend] predictedvalues += intercept y = self.y X = util.get_var_endog(y, lags, trend=trend, has_constant='raise') fittedvalues = np.dot(X, params) fv_start = start - k_ar pv_end = min(len(predictedvalues), len(fittedvalues) - fv_start) fv_end = min(len(fittedvalues), end-k_ar+1) predictedvalues[:pv_end] = fittedvalues[fv_start:fv_end] if not out_of_sample: return predictedvalues # fit out of sample y = y[-k_ar:] coefs = params[k_trend:].reshape((k_ar, k, k)).swapaxes(1,2) predictedvalues[pv_end:] = forecast(y, coefs, intercept, out_of_sample) return predictedvalues
[docs] def fit(self, maxlags=None, method='ols', ic=None, trend='c', verbose=False): """ Fit the VAR model Parameters ---------- maxlags : int Maximum number of lags to check for order selection, defaults to 12 * (nobs/100.)**(1./4), see select_order function method : {'ols'} Estimation method to use ic : {'aic', 'fpe', 'hqic', 'bic', None} Information criterion to use for VAR order selection. aic : Akaike fpe : Final prediction error hqic : Hannan-Quinn bic : Bayesian a.k.a. Schwarz verbose : bool, default False Print order selection output to the screen trend, str {"c", "ct", "ctt", "nc"} "c" - add constant "ct" - constant and trend "ctt" - constant, linear and quadratic trend "nc" - co constant, no trend Note that these are prepended to the columns of the dataset. Notes ----- Lutkepohl pp. 146-153 Returns ------- est : VARResults """ lags = maxlags if trend not in ['c', 'ct', 'ctt', 'nc']: raise ValueError("trend '{}' not supported for VAR".format(trend)) if ic is not None: selections = self.select_order(maxlags=maxlags, verbose=verbose) if ic not in selections: raise Exception("%s not recognized, must be among %s" % (ic, sorted(selections))) lags = selections[ic] if verbose: print('Using %d based on %s criterion' % (lags, ic)) else: if lags is None: lags = 1 k_trend = util.get_trendorder(trend) self.exog_names = util.make_lag_names(self.endog_names, lags, k_trend) self.nobs = len(self.endog) - lags return self._estimate_var(lags, trend=trend)
def _estimate_var(self, lags, offset=0, trend='c'): """ lags : int offset : int Periods to drop from beginning-- for order selection so it's an apples-to-apples comparison trend : string or None As per above """ # have to do this again because select_order doesn't call fit self.k_trend = k_trend = util.get_trendorder(trend) if offset < 0: # pragma: no cover raise ValueError('offset must be >= 0') y = self.y[offset:] z = util.get_var_endog(y, lags, trend=trend, has_constant='raise') y_sample = y[lags:] # Lutkepohl p75, about 5x faster than stated formula params = np.linalg.lstsq(z, y_sample)[0] resid = y_sample - np.dot(z, params) # Unbiased estimate of covariance matrix $\Sigma_u$ of the white noise # process $u$ # equivalent definition # .. math:: \frac{1}{T - Kp - 1} Y^\prime (I_T - Z (Z^\prime Z)^{-1} # Z^\prime) Y # Ref: Lutkepohl p.75 # df_resid right now is T - Kp - 1, which is a suggested correction avobs = len(y_sample) df_resid = avobs - (self.neqs * lags + k_trend) sse = np.dot(resid.T, resid) omega = sse / df_resid varfit = VARResults(y, z, params, omega, lags, names=self.endog_names, trend=trend, dates=self.data.dates, model=self) return VARResultsWrapper(varfit)
[docs] def select_order(self, maxlags=None, verbose=True): """ Compute lag order selections based on each of the available information criteria Parameters ---------- maxlags : int if None, defaults to 12 * (nobs/100.)**(1./4) verbose : bool, default True If True, print table of info criteria and selected orders Returns ------- selections : dict {info_crit -> selected_order} """ if maxlags is None: maxlags = int(round(12*(len(self.endog)/100.)**(1/4.))) ics = defaultdict(list) for p in range(maxlags + 1): # exclude some periods to same amount of data used for each lag # order result = self._estimate_var(p, offset=maxlags-p) for k, v in iteritems(result.info_criteria): ics[k].append(v) selected_orders = dict((k, mat(v).argmin()) for k, v in iteritems(ics)) if verbose: output.print_ic_table(ics, selected_orders) return selected_orders
[docs]class VARProcess(object): """ Class represents a known VAR(p) process Parameters ---------- coefs : ndarray (p x k x k) intercept : ndarray (length k) sigma_u : ndarray (k x k) names : sequence (length k) Returns ------- **Attributes**: """ def __init__(self, coefs, intercept, sigma_u, names=None): self.k_ar = len(coefs) self.neqs = coefs.shape[1] self.coefs = coefs self.intercept = intercept self.sigma_u = sigma_u self.names = names
[docs] def get_eq_index(self, name): "Return integer position of requested equation name" return util.get_index(self.names, name)
def __str__(self): output = ('VAR(%d) process for %d-dimensional response y_t' % (self.k_ar, self.neqs)) output += '\nstable: %s' % self.is_stable() output += '\nmean: %s' % self.mean() return output
[docs] def is_stable(self, verbose=False): """Determine stability based on model coefficients Parameters ---------- verbose : bool Print eigenvalues of the VAR(1) companion Notes ----- Checks if det(I - Az) = 0 for any mod(z) <= 1, so all the eigenvalues of the companion matrix must lie outside the unit circle """ return is_stable(self.coefs, verbose=verbose)
[docs] def plotsim(self, steps=1000): """ Plot a simulation from the VAR(p) process for the desired number of steps """ Y = util.varsim(self.coefs, self.intercept, self.sigma_u, steps=steps) plotting.plot_mts(Y)
[docs] def mean(self): r"""Mean of stable process Lutkepohl eq. 2.1.23 .. math:: \mu = (I - A_1 - \dots - A_p)^{-1} \alpha """ return solve(self._char_mat, self.intercept)
[docs] def ma_rep(self, maxn=10): r"""Compute MA(:math:`\infty`) coefficient matrices Parameters ---------- maxn : int Number of coefficient matrices to compute Returns ------- coefs : ndarray (maxn x k x k) """ return ma_rep(self.coefs, maxn=maxn)
[docs] def orth_ma_rep(self, maxn=10, P=None): r"""Compute Orthogonalized MA coefficient matrices using P matrix such that :math:`\Sigma_u = PP^\prime`. P defaults to the Cholesky decomposition of :math:`\Sigma_u` Parameters ---------- maxn : int Number of coefficient matrices to compute P : ndarray (k x k), optional Matrix such that Sigma_u = PP', defaults to Cholesky descomp Returns ------- coefs : ndarray (maxn x k x k) """ if P is None: P = self._chol_sigma_u ma_mats = self.ma_rep(maxn=maxn) return mat([np.dot(coefs, P) for coefs in ma_mats])
[docs] def long_run_effects(self): """Compute long-run effect of unit impulse .. math:: \Psi_\infty = \sum_{i=0}^\infty \Phi_i """ return L.inv(self._char_mat)
@cache_readonly def _chol_sigma_u(self): return chol(self.sigma_u) @cache_readonly def _char_mat(self): return np.eye(self.neqs) - self.coefs.sum(0)
[docs] def acf(self, nlags=None): """Compute theoretical autocovariance function Returns ------- acf : ndarray (p x k x k) """ return var_acf(self.coefs, self.sigma_u, nlags=nlags)
[docs] def acorr(self, nlags=None): """Compute theoretical autocorrelation function Returns ------- acorr : ndarray (p x k x k) """ return util.acf_to_acorr(self.acf(nlags=nlags))
[docs] def plot_acorr(self, nlags=10, linewidth=8): "Plot theoretical autocorrelation function" plotting.plot_full_acorr(self.acorr(nlags=nlags), linewidth=linewidth)
[docs] def forecast(self, y, steps): """Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y Parameters ---------- y : ndarray (p x k) steps : int Returns ------- forecasts : ndarray (steps x neqs) Notes ----- Lutkepohl pp 37-38 """ return forecast(y, self.coefs, self.intercept, steps)
[docs] def mse(self, steps): """ Compute theoretical forecast error variance matrices Parameters ---------- steps : int Number of steps ahead Notes ----- .. math:: \mathrm{MSE}(h) = \sum_{i=0}^{h-1} \Phi \Sigma_u \Phi^T Returns ------- forc_covs : ndarray (steps x neqs x neqs) """ ma_coefs = self.ma_rep(steps) k = len(self.sigma_u) forc_covs = np.zeros((steps, k, k)) prior = np.zeros((k, k)) for h in range(steps): # Sigma(h) = Sigma(h-1) + Phi Sig_u Phi' phi = ma_coefs[h] var = chain_dot(phi, self.sigma_u, phi.T) forc_covs[h] = prior = prior + var return forc_covs
forecast_cov = mse def _forecast_vars(self, steps): covs = self.forecast_cov(steps) # Take diagonal for each cov inds = np.arange(self.neqs) return covs[:, inds, inds]
[docs] def forecast_interval(self, y, steps, alpha=0.05): """Construct forecast interval estimates assuming the y are Gaussian Parameters ---------- Notes ----- Lutkepohl pp. 39-40 Returns ------- (lower, mid, upper) : (ndarray, ndarray, ndarray) """ assert(0 < alpha < 1) q = util.norm_signif_level(alpha) point_forecast = self.forecast(y, steps) sigma = np.sqrt(self._forecast_vars(steps)) forc_lower = point_forecast - q * sigma forc_upper = point_forecast + q * sigma return point_forecast, forc_lower, forc_upper
#------------------------------------------------------------------------------- # VARResults class
[docs]class VARResults(VARProcess): """Estimate VAR(p) process with fixed number of lags Parameters ---------- endog : array endog_lagged : array params : array sigma_u : array lag_order : int model : VAR model instance trend : str {'nc', 'c', 'ct'} names : array-like List of names of the endogenous variables in order of appearance in `endog`. dates Returns ------- **Attributes** aic bic bse coefs : ndarray (p x K x K) Estimated A_i matrices, A_i = coefs[i-1] cov_params dates detomega df_model : int df_resid : int endog endog_lagged fittedvalues fpe intercept info_criteria k_ar : int k_trend : int llf model names neqs : int Number of variables (equations) nobs : int n_totobs : int params k_ar : int Order of VAR process params : ndarray (Kp + 1) x K A_i matrices and intercept in stacked form [int A_1 ... A_p] pvalues names : list variables names resid roots : array The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 ... - coefs[p-1]*z**k_ar) = 0. Note that the inverse roots are returned, and stability requires that the roots lie outside the unit circle. sigma_u : ndarray (K x K) Estimate of white noise process variance Var[u_t] sigma_u_mle stderr trenorder tvalues y : ys_lagged """ _model_type = 'VAR' def __init__(self, endog, endog_lagged, params, sigma_u, lag_order, model=None, trend='c', names=None, dates=None): self.model = model self.y = self.endog = endog #keep alias for now self.ys_lagged = self.endog_lagged = endog_lagged #keep alias for now self.dates = dates self.n_totobs, neqs = self.y.shape self.nobs = self.n_totobs - lag_order k_trend = util.get_trendorder(trend) if k_trend > 0: # make this the polynomial trend order trendorder = k_trend - 1 else: trendorder = None self.k_trend = k_trend self.trendorder = trendorder self.exog_names = util.make_lag_names(names, lag_order, k_trend) self.params = params # Initialize VARProcess parent class # construct coefficient matrices # Each matrix needs to be transposed reshaped = self.params[self.k_trend:] reshaped = reshaped.reshape((lag_order, neqs, neqs)) # Need to transpose each coefficient matrix intercept = self.params[0] coefs = reshaped.swapaxes(1, 2).copy() super(VARResults, self).__init__(coefs, intercept, sigma_u, names=names)
[docs] def plot(self): """Plot input time series """ plotting.plot_mts(self.y, names=self.names, index=self.dates)
@property def df_model(self): """Number of estimated parameters, including the intercept / trends """ return self.neqs * self.k_ar + self.k_trend @property def df_resid(self): """Number of observations minus number of estimated parameters""" return self.nobs - self.df_model @cache_readonly
[docs] def fittedvalues(self): """The predicted insample values of the response variables of the model. """ return np.dot(self.ys_lagged, self.params)
@cache_readonly
[docs] def resid(self): """Residuals of response variable resulting from estimated coefficients """ return self.y[self.k_ar:] - self.fittedvalues
[docs] def sample_acov(self, nlags=1): return _compute_acov(self.y[self.k_ar:], nlags=nlags)
[docs] def sample_acorr(self, nlags=1): acovs = self.sample_acov(nlags=nlags) return _acovs_to_acorrs(acovs)
[docs] def plot_sample_acorr(self, nlags=10, linewidth=8): "Plot theoretical autocorrelation function" plotting.plot_full_acorr(self.sample_acorr(nlags=nlags), linewidth=linewidth)
[docs] def resid_acov(self, nlags=1): """ Compute centered sample autocovariance (including lag 0) Parameters ---------- nlags : int Returns ------- """ return _compute_acov(self.resid, nlags=nlags)
[docs] def resid_acorr(self, nlags=1): """ Compute sample autocorrelation (including lag 0) Parameters ---------- nlags : int Returns ------- """ acovs = self.resid_acov(nlags=nlags) return _acovs_to_acorrs(acovs)
@cache_readonly
[docs] def resid_corr(self): "Centered residual correlation matrix" return self.resid_acorr(0)[0]
@cache_readonly
[docs] def sigma_u_mle(self): """(Biased) maximum likelihood estimate of noise process covariance """ return self.sigma_u * self.df_resid / self.nobs
@cache_readonly
[docs] def cov_params(self): """Estimated variance-covariance of model coefficients Notes ----- Covariance of vec(B), where B is the matrix [intercept, A_1, ..., A_p] (K x (Kp + 1)) Adjusted to be an unbiased estimator Ref: Lutkepohl p.74-75 """ z = self.ys_lagged return np.kron(L.inv(np.dot(z.T, z)), self.sigma_u)
[docs] def cov_ybar(self): r"""Asymptotically consistent estimate of covariance of the sample mean .. math:: \sqrt(T) (\bar{y} - \mu) \rightarrow {\cal N}(0, \Sigma_{\bar{y}})\\ \Sigma_{\bar{y}} = B \Sigma_u B^\prime, \text{where } B = (I_K - A_1 - \cdots - A_p)^{-1} Notes ----- Lutkepohl Proposition 3.3 """ Ainv = L.inv(np.eye(self.neqs) - self.coefs.sum(0)) return chain_dot(Ainv, self.sigma_u, Ainv.T)
#------------------------------------------------------------ # Estimation-related things @cache_readonly def _zz(self): # Z'Z return np.dot(self.ys_lagged.T, self.ys_lagged) @property def _cov_alpha(self): """ Estimated covariance matrix of model coefficients ex intercept """ # drop intercept and trend return self.cov_params[self.k_trend*self.neqs:, self.k_trend*self.neqs:] @cache_readonly def _cov_sigma(self): """ Estimated covariance matrix of vech(sigma_u) """ D_K = tsa.duplication_matrix(self.neqs) D_Kinv = npl.pinv(D_K) sigxsig = np.kron(self.sigma_u, self.sigma_u) return 2 * chain_dot(D_Kinv, sigxsig, D_Kinv.T) @cache_readonly
[docs] def llf(self): "Compute VAR(p) loglikelihood" return var_loglike(self.resid, self.sigma_u_mle, self.nobs)
@cache_readonly
[docs] def stderr(self): """Standard errors of coefficients, reshaped to match in size """ stderr = np.sqrt(np.diag(self.cov_params)) return stderr.reshape((self.df_model, self.neqs), order='C')
bse = stderr # statsmodels interface? @cache_readonly
[docs] def tvalues(self): """Compute t-statistics. Use Student-t(T - Kp - 1) = t(df_resid) to test significance. """ return self.params / self.stderr
@cache_readonly
[docs] def pvalues(self): """Two-sided p-values for model coefficients from Student t-distribution """ return stats.t.sf(np.abs(self.tvalues), self.df_resid)*2
[docs] def plot_forecast(self, steps, alpha=0.05, plot_stderr=True): """ Plot forecast """ mid, lower, upper = self.forecast_interval(self.y[-self.k_ar:], steps, alpha=alpha) plotting.plot_var_forc(self.y, mid, lower, upper, names=self.names, plot_stderr=plot_stderr)
# Forecast error covariance functions
[docs] def forecast_cov(self, steps=1): r"""Compute forecast covariance matrices for desired number of steps Parameters ---------- steps : int Notes ----- .. math:: \Sigma_{\hat y}(h) = \Sigma_y(h) + \Omega(h) / T Ref: Lutkepohl pp. 96-97 Returns ------- covs : ndarray (steps x k x k) """ mse = self.mse(steps) omegas = self._omega_forc_cov(steps) return mse + omegas / self.nobs
#Monte Carlo irf standard errors
[docs] def irf_errband_mc(self, orth=False, repl=1000, T=10, signif=0.05, seed=None, burn=100, cum=False): """ Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions Parameters ---------- orth: bool, default False Compute orthoganalized impulse response error bands repl: int number of Monte Carlo replications to perform T: int, default 10 number of impulse response periods signif: float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed: int np.random.seed for replications burn: int number of initial observations to discard for simulation cum: bool, default False produce cumulative irf error bands Notes ----- Lutkepohl (2005) Appendix D Returns ------- Tuple of lower and upper arrays of ma_rep monte carlo standard errors """ neqs = self.neqs mean = self.mean() k_ar = self.k_ar coefs = self.coefs sigma_u = self.sigma_u intercept = self.intercept df_model = self.df_model nobs = self.nobs ma_coll = np.zeros((repl, T+1, neqs, neqs)) if (orth == True and cum == True): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ orth_ma_rep(maxn=T).cumsum(axis=0) elif (orth == True and cum == False): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ orth_ma_rep(maxn=T) elif (orth == False and cum == True): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ ma_rep(maxn=T).cumsum(axis=0) elif (orth == False and cum == False): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ ma_rep(maxn=T) for i in range(repl): #discard first hundred to eliminate correct for starting bias sim = util.varsim(coefs, intercept, sigma_u, seed=seed, steps=nobs+burn) sim = sim[burn:] ma_coll[i,:,:,:] = fill_coll(sim) ma_sort = np.sort(ma_coll, axis=0) #sort to get quantiles index = round(signif/2*repl)-1,round((1-signif/2)*repl)-1 lower = ma_sort[index[0],:, :, :] upper = ma_sort[index[1],:, :, :] return lower, upper
[docs] def irf_resim(self, orth=False, repl=1000, T=10, seed=None, burn=100, cum=False): """ Simulates impulse response function, returning an array of simulations. Used for Sims-Zha error band calculation. Parameters ---------- orth: bool, default False Compute orthoganalized impulse response error bands repl: int number of Monte Carlo replications to perform T: int, default 10 number of impulse response periods signif: float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed: int np.random.seed for replications burn: int number of initial observations to discard for simulation cum: bool, default False produce cumulative irf error bands Notes ----- Sims, Christoper A., and Tao Zha. 1999. "Error Bands for Impulse Response." Econometrica 67: 1113-1155. Returns ------- Array of simulated impulse response functions """ neqs = self.neqs mean = self.mean() k_ar = self.k_ar coefs = self.coefs sigma_u = self.sigma_u intercept = self.intercept df_model = self.df_model nobs = self.nobs ma_coll = np.zeros((repl, T+1, neqs, neqs)) if (orth == True and cum == True): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ orth_ma_rep(maxn=T).cumsum(axis=0) elif (orth == True and cum == False): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ orth_ma_rep(maxn=T) elif (orth == False and cum == True): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ ma_rep(maxn=T).cumsum(axis=0) elif (orth == False and cum == False): fill_coll = lambda sim : VAR(sim).fit(maxlags=k_ar).\ ma_rep(maxn=T) for i in range(repl): #discard first hundred to eliminate correct for starting bias sim = util.varsim(coefs, intercept, sigma_u, seed=seed, steps=nobs+burn) sim = sim[burn:] ma_coll[i,:,:,:] = fill_coll(sim) return ma_coll
def _omega_forc_cov(self, steps): # Approximate MSE matrix \Omega(h) as defined in Lut p97 G = self._zz Ginv = L.inv(G) # memoize powers of B for speedup # TODO: see if can memoize better B = self._bmat_forc_cov() _B = {} def bpow(i): if i not in _B: _B[i] = np.linalg.matrix_power(B, i) return _B[i] phis = self.ma_rep(steps) sig_u = self.sigma_u omegas = np.zeros((steps, self.neqs, self.neqs)) for h in range(1, steps + 1): if h == 1: omegas[h-1] = self.df_model * self.sigma_u continue om = omegas[h-1] for i in range(h): for j in range(h): Bi = bpow(h - 1 - i) Bj = bpow(h - 1 - j) mult = np.trace(chain_dot(Bi.T, Ginv, Bj, G)) om += mult * chain_dot(phis[i], sig_u, phis[j].T) omegas[h-1] = om return omegas def _bmat_forc_cov(self): # B as defined on p. 96 of Lut upper = np.zeros((1, self.df_model)) upper[0,0] = 1 lower_dim = self.neqs * (self.k_ar - 1) I = np.eye(lower_dim) lower = np.column_stack((np.zeros((lower_dim, 1)), I, np.zeros((lower_dim, self.neqs)))) return np.vstack((upper, self.params.T, lower))
[docs] def summary(self): """Compute console output summary of estimates Returns ------- summary : VARSummary """ return VARSummary(self)
[docs] def irf(self, periods=10, var_decomp=None, var_order=None): """Analyze impulse responses to shocks in system Parameters ---------- periods : int var_decomp : ndarray (k x k), lower triangular Must satisfy Omega = P P', where P is the passed matrix. Defaults to Cholesky decomposition of Omega var_order : sequence Alternate variable order for Cholesky decomposition Returns ------- irf : IRAnalysis """ if var_order is not None: raise NotImplementedError('alternate variable order not implemented' ' (yet)') return IRAnalysis(self, P=var_decomp, periods=periods)
[docs] def fevd(self, periods=10, var_decomp=None): """ Compute forecast error variance decomposition ("fevd") Returns ------- fevd : FEVD instance """ return FEVD(self, P=var_decomp, periods=periods)
[docs] def reorder(self, order): """Reorder variables for structural specification """ if len(order) != len(self.params[0,:]): raise ValueError("Reorder specification length should match number of endogenous variables") #This convert order to list of integers if given as strings if isinstance(order[0], string_types): order_new = [] for i, nam in enumerate(order): order_new.append(self.names.index(order[i])) order = order_new return _reordered(self, order)
#------------------------------------------------------------------------------- # VAR Diagnostics: Granger-causality, whiteness of residuals, normality, etc.
[docs] def test_causality(self, equation, variables, kind='f', signif=0.05, verbose=True): """Compute test statistic for null hypothesis of Granger-noncausality, general function to test joint Granger-causality of multiple variables Parameters ---------- equation : string or int Equation to test for causality variables : sequence (of strings or ints) List, tuple, etc. of variables to test for Granger-causality kind : {'f', 'wald'} Perform F-test or Wald (chi-sq) test signif : float, default 5% Significance level for computing critical values for test, defaulting to standard 0.95 level Notes ----- Null hypothesis is that there is no Granger-causality for the indicated variables. The degrees of freedom in the F-test are based on the number of variables in the VAR system, that is, degrees of freedom are equal to the number of equations in the VAR times degree of freedom of a single equation. Returns ------- results : dict """ if isinstance(variables, (string_types, int, np.integer)): variables = [variables] k, p = self.neqs, self.k_ar # number of restrictions N = len(variables) * self.k_ar # Make restriction matrix C = np.zeros((N, k ** 2 * p + k), dtype=float) eq_index = self.get_eq_index(equation) vinds = mat([self.get_eq_index(v) for v in variables]) # remember, vec is column order! offsets = np.concatenate([k + k ** 2 * j + k * vinds + eq_index for j in range(p)]) C[np.arange(N), offsets] = 1 # Lutkepohl 3.6.5 Cb = np.dot(C, vec(self.params.T)) middle = L.inv(chain_dot(C, self.cov_params, C.T)) # wald statistic lam_wald = statistic = chain_dot(Cb, middle, Cb) if kind.lower() == 'wald': df = N dist = stats.chi2(df) elif kind.lower() == 'f': statistic = lam_wald / N df = (N, k * self.df_resid) dist = stats.f(*df) else: raise Exception('kind %s not recognized' % kind) pvalue = dist.sf(statistic) crit_value = dist.ppf(1 - signif) conclusion = 'fail to reject' if statistic < crit_value else 'reject' results = { 'statistic' : statistic, 'crit_value' : crit_value, 'pvalue' : pvalue, 'df' : df, 'conclusion' : conclusion, 'signif' : signif } if verbose: summ = output.causality_summary(results, variables, equation, kind) print(summ) return results
[docs] def test_whiteness(self, nlags=10, plot=True, linewidth=8): """ Test white noise assumption. Sample (Y) autocorrelations are compared with the standard :math:`2 / \sqrt(T)` bounds. Parameters ---------- plot : boolean, default True Plot autocorrelations with 2 / sqrt(T) bounds """ acorrs = self.sample_acorr(nlags) bound = 2 / np.sqrt(self.nobs) # TODO: this probably needs some UI work if (np.abs(acorrs) > bound).any(): print('FAIL: Some autocorrelations exceed %.4f bound. ' 'See plot' % bound) else: print('PASS: No autocorrelations exceed %.4f bound' % bound) if plot: fig = plotting.plot_full_acorr(acorrs[1:], xlabel=np.arange(1, nlags+1), err_bound=bound, linewidth=linewidth) fig.suptitle(r"ACF plots with $2 / \sqrt{T}$ bounds " "for testing whiteness assumption")
[docs] def test_normality(self, signif=0.05, verbose=True): """ Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test Parameters ---------- signif : float Test significance threshold Notes ----- H0 (null) : data are generated by a Gaussian-distributed process """ Pinv = npl.inv(self._chol_sigma_u) w = np.array([np.dot(Pinv, u) for u in self.resid]) b1 = (w ** 3).sum(0) / self.nobs lam_skew = self.nobs * np.dot(b1, b1) / 6 b2 = (w ** 4).sum(0) / self.nobs - 3 lam_kurt = self.nobs * np.dot(b2, b2) / 24 lam_omni = lam_skew + lam_kurt omni_dist = stats.chi2(self.neqs * 2) omni_pvalue = omni_dist.sf(lam_omni) crit_omni = omni_dist.ppf(1 - signif) conclusion = 'fail to reject' if lam_omni < crit_omni else 'reject' results = { 'statistic' : lam_omni, 'crit_value' : crit_omni, 'pvalue' : omni_pvalue, 'df' : self.neqs * 2, 'conclusion' : conclusion, 'signif' : signif } if verbose: summ = output.normality_summary(results) print(summ) return results
@cache_readonly
[docs] def detomega(self): r""" Return determinant of white noise covariance with degrees of freedom correction: .. math:: \hat \Omega = \frac{T}{T - Kp - 1} \hat \Omega_{\mathrm{MLE}} """ return L.det(self.sigma_u)
@cache_readonly
[docs] def info_criteria(self): "information criteria for lagorder selection" nobs = self.nobs neqs = self.neqs lag_order = self.k_ar free_params = lag_order * neqs ** 2 + neqs * self.k_trend ld = logdet_symm(self.sigma_u_mle) # See Lutkepohl pp. 146-150 aic = ld + (2. / nobs) * free_params bic = ld + (np.log(nobs) / nobs) * free_params hqic = ld + (2. * np.log(np.log(nobs)) / nobs) * free_params fpe = ((nobs + self.df_model) / self.df_resid) ** neqs * np.exp(ld) return { 'aic' : aic, 'bic' : bic, 'hqic' : hqic, 'fpe' : fpe }
@property def aic(self): """Akaike information criterion""" return self.info_criteria['aic'] @property def fpe(self): """Final Prediction Error (FPE) Lutkepohl p. 147, see info_criteria """ return self.info_criteria['fpe'] @property def hqic(self): """Hannan-Quinn criterion""" return self.info_criteria['hqic'] @property def bic(self): """Bayesian a.k.a. Schwarz info criterion""" return self.info_criteria['bic'] @cache_readonly
[docs] def roots(self): neqs = self.neqs k_ar = self.k_ar p = neqs * k_ar arr = np.zeros((p,p)) arr[:neqs,:] = np.column_stack(self.coefs) arr[neqs:,:-neqs] = np.eye(p-neqs) roots = np.linalg.eig(arr)[0]**-1 idx = np.argsort(np.abs(roots))[::-1] # sort by reverse modulus return roots[idx]
class VARResultsWrapper(wrap.ResultsWrapper): _attrs = {'bse' : 'columns_eq', 'cov_params' : 'cov', 'params' : 'columns_eq', 'pvalues' : 'columns_eq', 'tvalues' : 'columns_eq', 'sigma_u' : 'cov_eq', 'sigma_u_mle' : 'cov_eq', 'stderr' : 'columns_eq'} _wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods) _wrap_methods.pop('cov_params') # not yet a method in VARResults wrap.populate_wrapper(VARResultsWrapper, VARResults)
[docs]class FEVD(object): """ Compute and plot Forecast error variance decomposition and asymptotic standard errors """ def __init__(self, model, P=None, periods=None): self.periods = periods self.model = model self.neqs = model.neqs self.names = model.model.endog_names self.irfobj = model.irf(var_decomp=P, periods=periods) self.orth_irfs = self.irfobj.orth_irfs # cumulative impulse responses irfs = (self.orth_irfs[:periods] ** 2).cumsum(axis=0) rng = lrange(self.neqs) mse = self.model.mse(periods)[:, rng, rng] # lag x equation x component fevd = np.empty_like(irfs) for i in range(periods): fevd[i] = (irfs[i].T / mse[i]).T # switch to equation x lag x component self.decomp = fevd.swapaxes(0, 1)
[docs] def summary(self): buf = StringIO() rng = lrange(self.periods) for i in range(self.neqs): ppm = output.pprint_matrix(self.decomp[i], rng, self.names) buf.write('FEVD for %s\n' % self.names[i]) buf.write(ppm + '\n') print(buf.getvalue())
[docs] def cov(self): """Compute asymptotic standard errors Returns ------- """ raise NotImplementedError
[docs] def plot(self, periods=None, figsize=(10,10), **plot_kwds): """Plot graphical display of FEVD Parameters ---------- periods : int, default None Defaults to number originally specified. Can be at most that number """ import matplotlib.pyplot as plt k = self.neqs periods = periods or self.periods fig, axes = plt.subplots(nrows=k, figsize=figsize) fig.suptitle('Forecast error variance decomposition (FEVD)') colors = [str(c) for c in np.arange(k, dtype=float) / k] ticks = np.arange(periods) limits = self.decomp.cumsum(2) for i in range(k): ax = axes[i] this_limits = limits[i].T handles = [] for j in range(k): lower = this_limits[j - 1] if j > 0 else 0 upper = this_limits[j] handle = ax.bar(ticks, upper - lower, bottom=lower, color=colors[j], label=self.names[j], **plot_kwds) handles.append(handle) ax.set_title(self.names[i]) # just use the last axis to get handles for plotting handles, labels = ax.get_legend_handles_labels() fig.legend(handles, labels, loc='upper right') plotting.adjust_subplots(right=0.85)
#------------------------------------------------------------------------------- def _compute_acov(x, nlags=1): x = x - x.mean(0) result = [] for lag in range(nlags + 1): if lag > 0: r = np.dot(x[lag:].T, x[:-lag]) else: r = np.dot(x.T, x) result.append(r) return np.array(result) / len(x) def _acovs_to_acorrs(acovs): sd = np.sqrt(np.diag(acovs[0])) return acovs / np.outer(sd, sd) if __name__ == '__main__': import statsmodels.api as sm from statsmodels.tsa.vector_ar.util import parse_lutkepohl_data import statsmodels.tools.data as data_util np.set_printoptions(linewidth=140, precision=5) sdata, dates = parse_lutkepohl_data('data/%s.dat' % 'e1') names = sdata.dtype.names data = data_util.struct_to_ndarray(sdata) adj_data = np.diff(np.log(data), axis=0) # est = VAR(adj_data, p=2, dates=dates[1:], names=names) model = VAR(adj_data[:-16], dates=dates[1:-16], names=names) # model = VAR(adj_data[:-16], dates=dates[1:-16], names=names) est = model.fit(maxlags=2) irf = est.irf() y = est.y[-2:] """ # irf.plot_irf() # i = 2; j = 1 # cv = irf.cum_effect_cov(orth=True) # print np.sqrt(cv[:, j * 3 + i, j * 3 + i]) / 1e-2 # data = np.genfromtxt('Canada.csv', delimiter=',', names=True) # data = data.view((float, 4)) """ ''' mdata = sm.datasets.macrodata.load().data mdata2 = mdata[['realgdp','realcons','realinv']] names = mdata2.dtype.names data = mdata2.view((float,3)) data = np.diff(np.log(data), axis=0) import pandas as pn df = pn.DataFrame.fromRecords(mdata) df = np.log(df.reindex(columns=names)) df = (df - df.shift(1)).dropna() model = VAR(df) est = model.fit(maxlags=2) irf = est.irf() '''