statsmodels.discrete.discrete_model.ProbitResults¶
-
class
statsmodels.discrete.discrete_model.ProbitResults(model, mlefit, cov_type='nonrobust', cov_kwds=None, use_t=None)[source]¶ A results class for Probit Model
Parameters: - model (A DiscreteModel instance) –
- params (array-like) – The parameters of a fitted model.
- hessian (array-like) – The hessian of the fitted model.
- scale (float) – A scale parameter for the covariance matrix.
Returns: - *Attributes*
- aic (float) – Akaike information criterion. -2*(llf - p) where p is the number of regressors including the intercept.
- bic (float) – Bayesian information criterion. -2*llf + ln(nobs)*p where p is the number of regressors including the intercept.
- bse (array) – The standard errors of the coefficients.
- df_resid (float) – See model definition.
- df_model (float) – See model definition.
- fitted_values (array) – Linear predictor XB.
- llf (float) – Value of the loglikelihood
- llnull (float) – Value of the constant-only loglikelihood
- llr (float) – Likelihood ratio chi-squared statistic; -2*(llnull - llf)
- llr_pvalue (float) – The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom df_model.
- prsquared (float) – McFadden’s pseudo-R-squared. 1 - (llf / llnull)
Methods
aic()bic()bse()conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix. f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()get_margeff([at, method, atexog, dummy, count])Get marginal effects of the fitted model. initialize(model, params, **kwd)llf()llnull()llr()llr_pvalue()load(fname)load a pickle, (class method) normalized_cov_params()pred_table([threshold])Prediction table predict([exog, transform])Call self.model.predict with self.params as the first argument. prsquared()pvalues()remove_data()remove data arrays, all nobs arrays from result and model resid_dev()Deviance residuals resid_generalized()Generalized residuals resid_pearson()Pearson residuals resid_response()The response residuals save(fname[, remove_data])save a pickle of this instance set_null_options([llnull, attach_results])set fit options for Null (constant-only) model summary([yname, xname, title, alpha, yname_list])Summarize the Regression Results summary2([yname, xname, title, alpha, …])Experimental function to summarize regression results t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis. wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns Attributes
use_t
