statsmodels.duration.hazard_regression.PHRegResults¶
- 
class 
statsmodels.duration.hazard_regression.PHRegResults(model, params, cov_params, scale=1.0, covariance_type='naive')[source]¶ Class to contain results of fitting a Cox proportional hazards survival model.
PHregResults inherits from statsmodels.LikelihoodModelResults
Parameters: statsmodels.LikelihoodModelResults (See) – Returns: - **Attributes**
 - model (class instance) – PHreg model instance that called fit.
 - normalized_cov_params (array) – The sampling covariance matrix of the estimates
 - params (array) – The coefficients of the fitted model. Each coefficient is the log hazard ratio corresponding to a 1 unit difference in a single covariate while holding the other covariates fixed.
 - bse (array) – The standard errors of the fitted parameters.
 
See also
statsmodels.LikelihoodModelResultsMethods
baseline_cumulative_hazard()A list (corresponding to the strata) containing the baseline cumulative hazard function evaluated at the event points. baseline_cumulative_hazard_function()A list (corresponding to the strata) containing function objects that calculate the cumulative hazard function. bse()Returns the standard errors of the parameter estimates. conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix. f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. get_distribution()Returns a scipy distribution object corresponding to the distribution of uncensored endog (duration) values for each case. initialize(model, params, **kwd)llf()load(fname)load a pickle, (class method) martingale_residuals()The martingale residuals. normalized_cov_params()predict([endog, exog, strata, offset, …])Returns predicted values from the proportional hazards regression model. pvalues()remove_data()remove data arrays, all nobs arrays from result and model save(fname[, remove_data])save a pickle of this instance schoenfeld_residuals()A matrix containing the Schoenfeld residuals. score_residuals()A matrix containing the score residuals. standard_errors()Returns the standard errors of the parameter estimates. summary([yname, xname, title, alpha])Summarize the proportional hazards regression results. t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis. wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns weighted_covariate_averages()The average covariate values within the at-risk set at each event time point, weighted by hazard. Attributes
use_t
