statsmodels.regression.linear_model.GLSAR.fit¶
- 
GLSAR.fit(method='pinv', cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs)¶ Full fit of the model.
The results include an estimate of covariance matrix, (whitened) residuals and an estimate of scale.
Parameters: - method (str, optional) – Can be “pinv”, “qr”. “pinv” uses the Moore-Penrose pseudoinverse to solve the least squares problem. “qr” uses the QR factorization.
 - cov_type (str, optional) – See regression.linear_model.RegressionResults for a description of the available covariance estimators
 - cov_kwds (list or None, optional) – See linear_model.RegressionResults.get_robustcov_results for a description required keywords for alternative covariance estimators
 - use_t (bool, optional) – Flag indicating to use the Student’s t distribution when computing p-values. Default behavior depends on cov_type. See linear_model.RegressionResults.get_robustcov_results for implementation details.
 
Returns: Return type: A RegressionResults class instance.
See also
regression.linear_model.RegressionResults,regression.linear_model.RegressionResults.get_robustcov_resultsNotes
The fit method uses the pseudoinverse of the design/exogenous variables to solve the least squares minimization.
