statsmodels.regression.linear_model.OLSResults.outlier_test¶
- 
OLSResults.outlier_test(method='bonf', alpha=0.05, labels=None, order=False, cutoff=None)[source]¶ Test observations for outliers according to method
Parameters: - method (str) – 
- bonferroni : one-step correction
 - sidak : one-step correction
 - holm-sidak :
 - holm :
 - simes-hochberg :
 - hommel :
 - fdr_bh : Benjamini/Hochberg
 - fdr_by : Benjamini/Yekutieli
 
See statsmodels.stats.multitest.multipletests for details.
 - alpha (float) – familywise error rate
 - labels (None or array_like) – If labels is not None, then it will be used as index to the returned pandas DataFrame. See also Returns below
 - order (bool) – Whether or not to order the results by the absolute value of the studentized residuals. If labels are provided they will also be sorted.
 - cutoff (None or float in [0, 1]) – If cutoff is not None, then the return only includes observations with multiple testing corrected p-values strictly below the cutoff. The returned array or dataframe can be empty if t
 
Returns: table – Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method.
Return type: ndarray or DataFrame
Notes
The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1.
- method (str) – 
 
