statsmodels.regression.quantile_regression.QuantReg¶
- 
class 
statsmodels.regression.quantile_regression.QuantReg(endog, exog, **kwargs)[source]¶ Quantile Regression
Estimate a quantile regression model using iterative reweighted least squares.
Parameters: - endog (array or dataframe) – endogenous/response variable
 - exog (array or dataframe) – exogenous/explanatory variable(s)
 
Notes
The Least Absolute Deviation (LAD) estimator is a special case where quantile is set to 0.5 (q argument of the fit method).
The asymptotic covariance matrix is estimated following the procedure in Greene (2008, p.407-408), using either the logistic or gaussian kernels (kernel argument of the fit method).
References
General:
- Birkes, D. and Y. Dodge(1993). Alternative Methods of Regression, John Wiley and Sons.
 - Green,W. H. (2008). Econometric Analysis. Sixth Edition. International Student Edition.
 - Koenker, R. (2005). Quantile Regression. New York: Cambridge University Press.
 - LeSage, J. P.(1999). Applied Econometrics Using MATLAB,
 
Kernels (used by the fit method):
- Green (2008) Table 14.2
 
Bandwidth selection (used by the fit method):
- Bofinger, E. (1975). Estimation of a density function using order statistics. Australian Journal of Statistics 17: 1-17.
 - Chamberlain, G. (1994). Quantile regression, censoring, and the structure of wages. In Advances in Econometrics, Vol. 1: Sixth World Congress, ed. C. A. Sims, 171-209. Cambridge: Cambridge University Press.
 - Hall, P., and S. Sheather. (1988). On the distribution of the Studentized quantile. Journal of the Royal Statistical Society, Series B 50: 381-391.
 
Keywords: Least Absolute Deviation(LAD) Regression, Quantile Regression, Regression, Robust Estimation.
Methods
fit([q, vcov, kernel, bandwidth, max_iter, …])Solve by Iterative Weighted Least Squares from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. get_distribution(params, scale[, exog, …])Returns a random number generator for the predictive distribution. hessian(params)The Hessian matrix of the model information(params)Fisher information matrix of model initialize()Initialize (possibly re-initialize) a Model instance. loglike(params)Log-likelihood of model. predict(params[, exog])Return linear predicted values from a design matrix. score(params)Score vector of model. whiten(data)QuantReg model whitener does nothing: returns data. Attributes
df_modelThe model degree of freedom, defined as the rank of the regressor matrix minus 1 if a constant is included. df_residThe residual degree of freedom, defined as the number of observations minus the rank of the regressor matrix. endog_namesNames of endogenous variables exog_namesNames of exogenous variables 
