statsmodels.sandbox.regression.gmm.IVGMM¶
- 
class 
statsmodels.sandbox.regression.gmm.IVGMM(endog, exog, instrument, k_moms=None, k_params=None, missing='none', **kwds)[source]¶ Basic class for instrumental variables estimation using GMM
A linear function for the conditional mean is defined as default but the methods should be overwritten by subclasses, currently LinearIVGMM and NonlinearIVGMM are implemented as subclasses.
See also
Methods
calc_weightmatrix(moms[, weights_method, …])calculate omega or the weighting matrix fit([start_params, maxiter, inv_weights, …])Estimate parameters using GMM and return GMMResults fitgmm(start[, weights, optim_method, …])estimate parameters using GMM fitgmm_cu(start[, optim_method, optim_args])estimate parameters using continuously updating GMM fititer(start[, maxiter, start_invweights, …])iterative estimation with updating of optimal weighting matrix fitstart()from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. get_error(params)gmmobjective(params, weights)objective function for GMM minimization gmmobjective_cu(params[, weights_method, wargs])objective function for continuously updating GMM minimization gradient_momcond(params[, epsilon, centered])gradient of moment conditions momcond(params)momcond_mean(params)mean of moment conditions, predict(params[, exog])After a model has been fit predict returns the fitted values. score(params, weights[, epsilon, centered])score_cu(params[, epsilon, centered])set_param_names(param_names[, k_params])set the parameter names in the model start_weights([inv])Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables results_class
