statsmodels.stats.contingency_tables.SquareTable¶
-
class
statsmodels.stats.contingency_tables.SquareTable(table, shift_zeros=True)[source]¶ Methods for analyzing a square contingency table.
Parameters: - table (array-like) – A square contingency table, or DataFrame that is converted to a square form.
- shift_zeros (boolean) – If True and any cell count is zero, add 0.5 to all values in the table.
- methods should only be used when the rows and columns of the (These) –
- have the same categories. If table is provided as a (table) –
- DataFrame, the row and column indices will be extended to (Pandas) –
- a square table, inserting zeros where a row or column is (create) –
- Otherwise the table should be provided in a square form, (missing.) –
- the (implicit) row and column categories appearing in the (with) –
- order. (same) –
Methods
chi2_contribs()cumulative_log_oddsratios()cumulative_oddsratios()fittedvalues()from_data(data[, shift_zeros])Construct a Table object from data. homogeneity([method])Compare row and column marginal distributions. independence_probabilities()local_log_oddsratios()local_oddsratios()marginal_probabilities()resid_pearson()standardized_resids()summary([alpha, float_format])Produce a summary of the analysis. symmetry([method])Test for symmetry of a joint distribution. test_nominal_association()Assess independence for nominal factors. test_ordinal_association([row_scores, …])Assess independence between two ordinal variables.
