statsmodels.tools.eval_measures.bic_sigma¶
- 
statsmodels.tools.eval_measures.bic_sigma(sigma2, nobs, df_modelwc, islog=False)[source]¶ Bayesian information criterion (BIC) or Schwarz criterion
Parameters: - sigma2 (float) – estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma.
 - nobs (int) – number of observations
 - df_modelwc (int) – number of parameters including constant
 
Returns: bic – information criterion
Return type: float
Notes
A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models.
References
