statsmodels.tools.numdiff.approx_hess_cs¶
- 
statsmodels.tools.numdiff.approx_hess_cs(x, f, epsilon=None, args=(), kwargs={})[source]¶ Calculate Hessian with complex-step derivative approximation Calculate Hessian with finite difference derivative approximation
Parameters: - x (array_like) – value at which function derivative is evaluated
 - f (function) – function of one array f(x, *args, **kwargs)
 - epsilon (float or array-like, optional) – Stepsize used, if None, then stepsize is automatically chosen according to EPS**(1/3)*x.
 - args (tuple) – Arguments for function f.
 - kwargs (dict) – Keyword arguments for function f.
 
Returns: hess – array of partial second derivatives, Hessian
Return type: ndarray
Notes
Equation (10) in Ridout. Computes the Hessian as:
1/(2*d_j*d_k) * imag(f(x + i*d[j]*e[j] + d[k]*e[k]) - f(x + i*d[j]*e[j] - d[k]*e[k]))
where e[j] is a vector with element j == 1 and the rest are zero and d[i] is epsilon[i].
References
- Ridout, M.S. (2009) Statistical applications of the complex-step method
 - of numerical differentiation. The American Statistician, 63, 66-74
 
