statsmodels.tsa.holtwinters.Holt¶
- 
class 
statsmodels.tsa.holtwinters.Holt(endog, exponential=False, damped=False)[source]¶ Holt’s Exponential Smoothing wrapper(…)
Parameters: - endog (array-like) – Time series
 - expoential (bool, optional) – Type of trend component.
 - damped (bool, optional) – Should the trend component be damped.
 
Returns: results
Return type: Holt class
Notes
This is a full implementation of the holts exponential smoothing as per [1].
See also
Exponential,SimpleReferences
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2014.
Methods
fit([smoothing_level, smoothing_slope, …])fit Holt’s Exponential Smoothing wrapper(…) from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian(params)The Hessian matrix of the model information(params)Fisher information matrix of model initialize()Initialize (possibly re-initialize) a Model instance. loglike(params)Log-likelihood of model. predict(params[, start, end])Returns in-sample and out-of-sample prediction. score(params)Score vector of model. Attributes
endog_namesNames of endogenous variables exog_names
