statsmodels.tsa.holtwinters.HoltWintersResults¶
-
class
statsmodels.tsa.holtwinters.HoltWintersResults(model, params, **kwds)[source]¶ Holt Winter’s Exponential Smoothing Results
Parameters: - model (ExponentialSmoothing instance) – The fitted model instance
- params (dictionary) – All the parameters for the Exponential Smoothing model.
-
specification¶ dictionary – Dictionary including all attributes from the VARMAX model instance.
-
params¶ dictionary – All the parameters for the Exponential Smoothing model.
-
fittedfcast¶ array – An array of both the fitted values and forecast values.
-
fittedvalues¶ array – An array of the fitted values. Fitted by the Exponential Smoothing model.
-
fcast¶ array – An array of the forecast values forecast by the Exponential Smoothing model.
-
sse¶ float – The sum of squared errors
-
level¶ array – An array of the levels values that make up the fitted values.
-
slope¶ array – An array of the slope values that make up the fitted values.
-
season¶ array – An array of the seaonal values that make up the fitted values.
-
aic¶ float – The Akaike information criterion.
-
bic¶ float – The Bayesian information criterion.
-
aicc¶ float – AIC with a correction for finite sample sizes.
-
resid¶ array – An array of the residuals of the fittedvalues and actual values.
-
k¶ int – the k parameter used to remove the bias in AIC, BIC etc.
Methods
forecast([steps])Out-of-sample forecasts initialize(model, params, **kwd)predict([start, end])In-sample prediction and out-of-sample forecasting summary()
