statsmodels.tsa.holtwinters.HoltWintersResults¶
- 
class 
statsmodels.tsa.holtwinters.HoltWintersResults(model, params, **kwds)[source]¶ Holt Winter’s Exponential Smoothing Results
Parameters: - model (ExponentialSmoothing instance) – The fitted model instance
 - params (dictionary) – All the parameters for the Exponential Smoothing model.
 
- 
specification¶ dictionary – Dictionary including all attributes from the VARMAX model instance.
- 
params¶ dictionary – All the parameters for the Exponential Smoothing model.
- 
fittedfcast¶ array – An array of both the fitted values and forecast values.
- 
fittedvalues¶ array – An array of the fitted values. Fitted by the Exponential Smoothing model.
- 
fcast¶ array – An array of the forecast values forecast by the Exponential Smoothing model.
- 
sse¶ float – The sum of squared errors
- 
level¶ array – An array of the levels values that make up the fitted values.
- 
slope¶ array – An array of the slope values that make up the fitted values.
- 
season¶ array – An array of the seaonal values that make up the fitted values.
- 
aic¶ float – The Akaike information criterion.
- 
bic¶ float – The Bayesian information criterion.
- 
aicc¶ float – AIC with a correction for finite sample sizes.
- 
resid¶ array – An array of the residuals of the fittedvalues and actual values.
- 
k¶ int – the k parameter used to remove the bias in AIC, BIC etc.
Methods
forecast([steps])Out-of-sample forecasts initialize(model, params, **kwd)predict([start, end])In-sample prediction and out-of-sample forecasting summary()
