statsmodels.tsa.statespace.representation.FrozenRepresentation¶
-
class
statsmodels.tsa.statespace.representation.FrozenRepresentation(model)[source]¶ Frozen Statespace Model
Takes a snapshot of a Statespace model.
Parameters: model (Representation) – A Statespace representation -
nobs¶ int – Number of observations.
-
k_endog¶ int – The dimension of the observation series.
-
k_states¶ int – The dimension of the unobserved state process.
-
k_posdef¶ int – The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation.
-
dtype¶ dtype – Datatype of representation matrices
-
prefix¶ str – BLAS prefix of representation matrices
-
shapes¶ dictionary of name:tuple – A dictionary recording the shapes of each of the representation matrices as tuples.
-
endog¶ array – The observation vector.
-
design¶ array – The design matrix, \(Z\).
-
obs_intercept¶ array – The intercept for the observation equation, \(d\).
-
obs_cov¶ array – The covariance matrix for the observation equation \(H\).
-
transition¶ array – The transition matrix, \(T\).
-
state_intercept¶ array – The intercept for the transition equation, \(c\).
-
selection¶ array – The selection matrix, \(R\).
-
state_cov¶ array – The covariance matrix for the state equation \(Q\).
-
missing¶ array of bool – An array of the same size as endog, filled with boolean values that are True if the corresponding entry in endog is NaN and False otherwise.
-
nmissing¶ array of int – An array of size nobs, where the ith entry is the number (between 0 and k_endog) of NaNs in the ith row of the endog array.
-
time_invariant¶ bool – Whether or not the representation matrices are time-invariant
-
initialization¶ str – Kalman filter initialization method.
-
initial_state¶ array_like – The state vector used to initialize the Kalamn filter.
-
initial_state_cov¶ array_like – The state covariance matrix used to initialize the Kalamn filter.
Methods
update_representation(model)-
