statsmodels.tsa.varma_process.VarmaPoly¶
- 
class 
statsmodels.tsa.varma_process.VarmaPoly(ar, ma=None)[source]¶ class to keep track of Varma polynomial format
Examples
- ar23 = np.array([[[ 1. , 0. ],
 - [ 0. , 1. ]],
- [[-0.6, 0. ],
 - [ 0.2, -0.6]],
 - [[-0.1, 0. ],
 - [ 0.1, -0.1]]])
 
 - ma22 = np.array([[[ 1. , 0. ],
 - [ 0. , 1. ]],
- [[ 0.4, 0. ],
 - [ 0.2, 0.3]]])
 
 
Methods
getisinvertible([a])check whether the auto-regressive lag-polynomial is stationary getisstationary([a])check whether the auto-regressive lag-polynomial is stationary hstack([a, name])stack lagpolynomial horizontally in 2d array hstackarma_minus1()stack ar and lagpolynomial vertically in 2d array reduceform(apoly)this assumes no exog, todo stacksquare([a, name, orientation])stack lagpolynomial vertically in 2d square array with eye vstack([a, name])stack lagpolynomial vertically in 2d array vstackarma_minus1()stack ar and lagpolynomial vertically in 2d array 
