statsmodels.tsa.vector_ar.dynamic.DynamicVAR¶
- 
class 
statsmodels.tsa.vector_ar.dynamic.DynamicVAR(data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None)[source]¶ Estimates time-varying vector autoregression (VAR(p)) using equation-by-equation least squares
Parameters: - data (pandas.DataFrame) –
 - lag_order (int, default 1) –
 - window (int) –
 - window_type ({'expanding', 'rolling'}) –
 - min_periods (int or None) – Minimum number of observations to require in window, defaults to window size if None specified
 - trend ({'c', 'nc', 'ct', 'ctt'}) – TODO
 
Returns: - **Attributes**
 - coefs (Panel) – items : coefficient names major_axis : dates minor_axis : VAR equation names
 
Methods
T()Number of time periods in results coefs()Return dynamic regression coefficients as Panel equations()forecast([steps])Produce dynamic forecast plot_forecast([steps, figsize])Plot h-step ahead forecasts against actual realizations of time series. r2()Returns the r-squared values. resid()Attributes
nobsresult_index
