statsmodels.tsa.vector_ar.var_model.VAR¶
- 
class 
statsmodels.tsa.vector_ar.var_model.VAR(endog, exog=None, dates=None, freq=None, missing='none')[source]¶ Fit VAR(p) process and do lag order selection
\[y_t = A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t\]Parameters: - endog (array-like) – 2-d endogenous response variable. The independent variable.
 - exog (array-like) – 2-d exogenous variable.
 - dates (array-like) – must match number of rows of endog
 
References
Lütkepohl (2005) New Introduction to Multiple Time Series Analysis
Methods
fit([maxlags, method, ic, trend, verbose])Fit the VAR model from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. hessian(params)The Hessian matrix of the model information(params)Fisher information matrix of model initialize()Initialize (possibly re-initialize) a Model instance. loglike(params)Log-likelihood of model. predict(params[, start, end, lags, trend])Returns in-sample predictions or forecasts score(params)Score vector of model. select_order([maxlags, trend])Compute lag order selections based on each of the available information criteria Attributes
endog_namesNames of endogenous variables exog_names
