statsmodels.tsa.vector_ar.var_model.VARResults¶
- 
class 
statsmodels.tsa.vector_ar.var_model.VARResults(endog, endog_lagged, params, sigma_u, lag_order, model=None, trend='c', names=None, dates=None, exog=None)[source]¶ Estimate VAR(p) process with fixed number of lags
Parameters: - endog (array) –
 - endog_lagged (array) –
 - params (array) –
 - sigma_u (array) –
 - lag_order (int) –
 - model (VAR model instance) –
 - trend (str {'nc', 'c', 'ct'}) –
 - names (array-like) – List of names of the endogenous variables in order of appearance in endog.
 - dates –
 - exog (array) –
 
Returns: - **Attributes**
 - aic
 - bic
 - bse
 - coefs (ndarray (p x K x K)) – Estimated A_i matrices, A_i = coefs[i-1]
 - cov_params
 - dates
 - detomega
 - df_model (int)
 - df_resid (int)
 - endog
 - endog_lagged
 - fittedvalues
 - fpe
 - intercept
 - info_criteria
 - k_ar (int)
 - k_trend (int)
 - llf
 - model
 - names
 - neqs (int) – Number of variables (equations)
 - nobs (int)
 - n_totobs (int)
 - params
 - k_ar (int) – Order of VAR process
 - params (ndarray (Kp + 1) x K) – A_i matrices and intercept in stacked form [int A_1 … A_p]
 - pvalues
 - names (list) – variables names
 - resid
 - roots (array) – The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 … - coefs[p-1]*z**k_ar) = 0. Note that the inverse roots are returned, and stability requires that the roots lie outside the unit circle.
 - sigma_u (ndarray (K x K)) – Estimate of white noise process variance Var[u_t]
 - sigma_u_mle
 - stderr
 - trenorder
 - tvalues
 - y
 - ys_lagged
 
Methods
acf([nlags])Compute theoretical autocovariance function acorr([nlags])Compute theoretical autocorrelation function bse()Standard errors of coefficients, reshaped to match in size cov_params()Estimated variance-covariance of model coefficients cov_ybar()Asymptotically consistent estimate of covariance of the sample mean detomega()Return determinant of white noise covariance with degrees of freedom correction: fevd([periods, var_decomp])Compute forecast error variance decomposition (“fevd”) fittedvalues()The predicted insample values of the response variables of the model. forecast(y, steps[, exog_future])Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y forecast_cov([steps, method])Compute forecast covariance matrices for desired number of steps forecast_interval(y, steps[, alpha, exog_future])Construct forecast interval estimates assuming the y are Gaussian get_eq_index(name)Return integer position of requested equation name info_criteria()information criteria for lagorder selection intercept_longrun()Long run intercept of stable VAR process irf([periods, var_decomp, var_order])Analyze impulse responses to shocks in system irf_errband_mc([orth, repl, T, signif, …])Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions irf_resim([orth, repl, T, seed, burn, cum])Simulates impulse response function, returning an array of simulations. is_stable([verbose])Determine stability based on model coefficients llf()Compute VAR(p) loglikelihood long_run_effects()Compute long-run effect of unit impulse ma_rep([maxn])Compute MA(\(\infty\)) coefficient matrices mean()Long run intercept of stable VAR process mse(steps)Compute theoretical forecast error variance matrices orth_ma_rep([maxn, P])Compute orthogonalized MA coefficient matrices using P matrix such that \(\Sigma_u = PP^\prime\). plot()Plot input time series plot_acorr([nlags, resid, linewidth])Plot autocorrelation of sample (endog) or residuals plot_forecast(steps[, alpha, plot_stderr])Plot forecast plot_sample_acorr([nlags, linewidth])Plot theoretical autocorrelation function plotsim([steps, offset, seed])Plot a simulation from the VAR(p) process for the desired number of steps pvalues()Two-sided p-values for model coefficients from Student t-distribution pvalues_dt()pvalues_endog_lagged()reorder(order)Reorder variables for structural specification resid()Residuals of response variable resulting from estimated coefficients resid_acorr([nlags])Compute sample autocorrelation (including lag 0) resid_acov([nlags])Compute centered sample autocovariance (including lag 0) resid_corr()Centered residual correlation matrix roots()sample_acorr([nlags])sample_acov([nlags])sigma_u_mle()(Biased) maximum likelihood estimate of noise process covariance simulate_var([steps, offset, seed])simulate the VAR(p) process for the desired number of steps stderr()Standard errors of coefficients, reshaped to match in size stderr_dt()stderr_endog_lagged()summary()Compute console output summary of estimates test_causality(caused[, causing, kind, signif])Test Granger causality test_inst_causality(causing[, signif])Test for instantaneous causality test_normality([signif])Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test. test_whiteness([nlags, signif, adjusted])Residual whiteness tests using Portmanteau test to_vecm()tvalues()Compute t-statistics. tvalues_dt()tvalues_endog_lagged()Attributes
aicAkaike information criterion bicBayesian a.k.a. df_modelNumber of estimated parameters, including the intercept / trends df_residNumber of observations minus number of estimated parameters fpeFinal Prediction Error (FPE) hqicHannan-Quinn criterion 
