# -*- coding: utf-8 -*-
"""Various Statistical Tests
Author: josef-pktd
License: BSD-3
Notes
-----
Almost fully verified against R or Gretl, not all options are the same.
In many cases of Lagrange multiplier tests both the LM test and the F test is
returned. In some but not all cases, R has the option to choose the test
statistic. Some alternative test statistic results have not been verified.
TODO
* refactor to store intermediate results
* how easy is it to attach a test that is a class to a result instance,
for example CompareCox as a method compare_cox(self, other) ?
missing:
* pvalues for breaks_hansen
* additional options, compare with R, check where ddof is appropriate
* new tests:
- breaks_ap, more recent breaks tests
- specification tests against nonparametric alternatives
"""
from statsmodels.compat.python import iteritems
from collections.abc import Iterable
import numpy as np
import pandas as pd
from scipy import stats
from statsmodels.regression.linear_model import OLS
from statsmodels.tsa.stattools import acf, adfuller
from statsmodels.tsa.tsatools import lagmat
from statsmodels.tools.validation import array_like, int_like, bool_like
# get the old signature back so the examples work
[docs]def unitroot_adf(x, maxlag=None, trendorder=0, autolag='AIC', store=False):
return adfuller(x, maxlag=maxlag, regression=trendorder, autolag=autolag,
store=store, regresults=False)
#TODO: I like the bunch pattern for this too.
class ResultsStore(object):
def __str__(self):
return self._str
[docs]class CompareCox(object):
'''Cox Test for non-nested models
Parameters
----------
results_x : Result instance
result instance of first model
results_z : Result instance
result instance of second model
attach : bool
Formulas from Greene, section 8.3.4 translated to code
produces correct results for Example 8.3, Greene
'''
def run(self, results_x, results_z, attach=True):
'''run Cox test for non-nested models
Parameters
----------
results_x : Result instance
result instance of first model
results_z : Result instance
result instance of second model
attach : bool
If true, then the intermediate results are attached to the instance.
Returns
-------
tstat : float
t statistic for the test that including the fitted values of the
first model in the second model has no effect.
pvalue : float
two-sided pvalue for the t statistic
Notes
-----
Tests of non-nested hypothesis might not provide unambiguous answers.
The test should be performed in both directions and it is possible
that both or neither test rejects. see ??? for more information.
References
----------
???
'''
if not np.allclose(results_x.model.endog, results_z.model.endog):
raise ValueError('endogenous variables in models are not the same')
nobs = results_x.model.endog.shape[0]
x = results_x.model.exog
z = results_z.model.exog
sigma2_x = results_x.ssr/nobs
sigma2_z = results_z.ssr/nobs
yhat_x = results_x.fittedvalues
yhat_z = results_z.fittedvalues
res_dx = OLS(yhat_x, z).fit()
err_zx = res_dx.resid
res_xzx = OLS(err_zx, x).fit()
err_xzx = res_xzx.resid
sigma2_zx = sigma2_x + np.dot(err_zx.T, err_zx)/nobs
c01 = nobs/2. * (np.log(sigma2_z) - np.log(sigma2_zx))
v01 = sigma2_x * np.dot(err_xzx.T, err_xzx) / sigma2_zx**2
q = c01 / np.sqrt(v01)
pval = 2*stats.norm.sf(np.abs(q))
if attach:
self.res_dx = res_dx
self.res_xzx = res_xzx
self.c01 = c01
self.v01 = v01
self.q = q
self.pvalue = pval
self.dist = stats.norm
return q, pval
def __call__(self, results_x, results_z):
return self.run(results_x, results_z, attach=False)
compare_cox = CompareCox()
[docs]class CompareJ(object):
'''J-Test for comparing non-nested models
Parameters
----------
results_x : Result instance
result instance of first model
results_z : Result instance
result instance of second model
attach : bool
From description in Greene, section 8.3.3
produces correct results for Example 8.3, Greene - not checked yet
#currently an exception, but I do not have clean reload in python session
check what results should be attached
'''
def run(self, results_x, results_z, attach=True):
'''run J-test for non-nested models
Parameters
----------
results_x : Result instance
result instance of first model
results_z : Result instance
result instance of second model
attach : bool
If true, then the intermediate results are attached to the instance.
Returns
-------
tstat : float
t statistic for the test that including the fitted values of the
first model in the second model has no effect.
pvalue : float
two-sided pvalue for the t statistic
Notes
-----
Tests of non-nested hypothesis might not provide unambiguous answers.
The test should be performed in both directions and it is possible
that both or neither test rejects. see ??? for more information.
References
----------
???
'''
if not np.allclose(results_x.model.endog, results_z.model.endog):
raise ValueError('endogenous variables in models are not the same')
nobs = results_x.model.endog.shape[0]
y = results_x.model.endog
x = results_x.model.exog
z = results_z.model.exog
#sigma2_x = results_x.ssr/nobs
#sigma2_z = results_z.ssr/nobs
yhat_x = results_x.fittedvalues
#yhat_z = results_z.fittedvalues
res_zx = OLS(y, np.column_stack((yhat_x, z))).fit()
self.res_zx = res_zx #for testing
tstat = res_zx.tvalues[0]
pval = res_zx.pvalues[0]
if attach:
self.res_zx = res_zx
self.dist = stats.t(res_zx.df_resid)
self.teststat = tstat
self.pvalue = pval
return tstat, pval
def __call__(self, results_x, results_z):
return self.run(results_x, results_z, attach=False)
compare_j = CompareJ()
[docs]def acorr_ljungbox(x, lags=None, boxpierce=False, model_df=0, period=None,
return_df=None):
"""
Ljung-Box test of autocorrelation in residuals.
Parameters
----------
x : array_like
The data series. Assumed to have mean zero, e.g., regression residuals
when used as diagnostic test.
lags : {None, int, array_like}
If lags is an integer then this is taken to be the largest lag
that is included, the test result is reported for all smaller lag
length. If lags is a list or array, then all lags are included up to
the largest lag in the list, however only the tests for the lags in
the list are reported. If lags is None, then the default maxlag is
currently min((nobs // 2 - 2), 40). After 0.12 this will change to
min(10, nobs // 5). The default number of lags changes if period
is set.
boxpierce : {False, True}
If true, then additional to the results of the Ljung-Box test also the
Box-Pierce test results are returned
model_df : int
Number of degrees of freedom consumed by the model. In an ARMA model,
this value is usually p+q where p is the AR order and q is the MA
order. This value is subtracted from the degrees-of-freedom used in
the test so that the adjusted dof for the statistics are
lags - model_df. If lags - model_df <= 0, then NaN is returned.
period : {int, None}
The period of a Seasonal time series. Used to compute the max lag
for seasonal data which uses min(2*period, nobs // 5) if set. If None,
then the default rule is used to set the number of lags. When set, must
be >= 2.
return_df : bool
Flag indicating whether to return the result as a single DataFrame
with columns lb_stat, lb_pvalue, and optionally bp_stat and bp_pvalue.
After 0.12, this will become the only return method. Set to True
to return the DataFrame or False to continue returning the 2 - 4
output. If not set, a warning is raised.
Returns
-------
lbvalue : float or array
The Ljung-Box test statistic.
pvalue : float or array
The p-value based on chi-square distribution. The p-value is computed
as 1.0 - chi2.cdf(lbvalue, dof) where dof is lag - model_df. If
lag - model_df <= 0, then NaN is returned for the pvalue.
bpvalue : (optional), float or array
The test statistic for Box-Pierce test.
bppvalue : (optional), float or array
The p-value based for Box-Pierce test on chi-square distribution.
The p-value is computed as 1.0 - chi2.cdf(bpvalue, dof) where dof is
lag - model_df. If lag - model_df <= 0, then NaN is returned for the
pvalue.
Notes
-----
Ljung-Box and Box-Pierce statistic differ in their scaling of the
autocorrelation function. Ljung-Box test is has better finite-sample
properties.
Examples
--------
>>> data = sm.datasets.sunspots.load_pandas().data
>>> res = sm.tsa.ARMA(data['SUNACTIVITY'], (1,1)).fit(disp=-1)
>>> sm.stats.acorr_ljungbox(res.resid, lags=[10], return_df=True)
lb_stat lb_pvalue
10 214.106992 1.827374e-40
References
----------
.. [*] Green, W. "Econometric Analysis," 5th ed., Pearson, 2003.
"""
x = array_like(x, 'x')
period = int_like(period, 'period', optional=True)
return_df = bool_like(return_df, 'return_df', optional=True)
model_df = int_like(model_df, 'model_df', optional=False)
if period is not None and period <= 1:
raise ValueError('period must be >= 2')
if model_df < 0:
raise ValueError('model_df must be >= 0')
nobs = x.shape[0]
if period is not None:
lags = np.arange(1, min(nobs // 5, 2 * period) + 1, dtype=np.int)
elif lags is None:
# TODO: Switch to min(10, nobs//5) after 0.12
import warnings
warnings.warn("The default value of lags is changing. After 0.12, "
"this value will become min(10, nobs//5). Directly set"
"lags to silence this warning.", FutureWarning)
# Future
# lags = np.arange(1, min(nobs // 5, 10) + 1, dtype=np.int)
lags = np.arange(1, min((nobs // 2 - 2), 40) + 1, dtype=np.int)
elif not isinstance(lags, Iterable):
lags = int_like(lags, 'lags')
lags = np.arange(1, lags + 1)
lags = array_like(lags, 'lags', dtype=np.int)
maxlag = lags.max()
# normalize by nobs not (nobs-nlags)
# SS: unbiased=False is default now
sacf = acf(x, nlags=maxlag, fft=False)
sacf2 = sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1))
qljungbox = nobs * (nobs + 2) * np.cumsum(sacf2)[lags - 1]
adj_lags = lags - model_df
pval = np.full_like(qljungbox, np.nan)
loc = adj_lags > 0
pval[loc] = stats.chi2.sf(qljungbox[loc], adj_lags[loc])
if return_df is None:
msg = ("The value returned will change to a single DataFrame after "
"0.12 is released. Set return_df to True to use to return a "
"DataFrame now. Set return_df to False to silence this "
"warning.")
import warnings
warnings.warn(msg, FutureWarning)
if not boxpierce:
if return_df:
return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval},
index=lags)
return qljungbox, pval
qboxpierce = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2)[lags - 1]
pvalbp = np.full_like(qljungbox, np.nan)
pvalbp[loc] = stats.chi2.sf(qboxpierce[loc], adj_lags[loc])
if return_df:
return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval,
"bp_stat": qboxpierce, "bp_pvalue": pvalbp},
index=lags)
return qljungbox, pval, qboxpierce, pvalbp
def acorr_lm(x, maxlag=None, autolag='AIC', store=False, regresults=False):
"""
Lagrange Multiplier tests for autocorrelation
This is a generic Lagrange Multiplier test for autocorrelation. I do not
have a reference for it, but it returns Engle's ARCH test if x is the
squared residual array. A variation on it with additional exogenous
variables is the Breusch-Godfrey autocorrelation test.
Parameters
----------
resid : ndarray, (nobs,)
residuals from an estimation, or time series
maxlag : int
highest lag to use
autolag : None or string
If None, then a fixed number of lags given by maxlag is used.
store : bool
If true then the intermediate results are also returned
Returns
-------
lm : float
Lagrange multiplier test statistic
lmpval : float
p-value for Lagrange multiplier test
fval : float
fstatistic for F test, alternative version of the same test based on
F test for the parameter restriction
fpval : float
pvalue for F test
resstore : instance (optional)
a class instance that holds intermediate results. Only returned if
store=True
See Also
--------
het_arch
acorr_breusch_godfrey
acorr_ljung_box
"""
if regresults:
store = True
x = np.asarray(x)
nobs = x.shape[0]
if maxlag is None:
#for adf from Greene referencing Schwert 1989
maxlag = int(np.ceil(12. * np.power(nobs/100., 1/4.)))#nobs//4 #TODO: check default, or do AIC/BIC
xdiff = np.diff(x)
#
xdall = lagmat(x[:,None], maxlag, trim='both')
nobs = xdall.shape[0]
xdall = np.c_[np.ones((nobs,1)), xdall]
xshort = x[-nobs:]
if store:
resstore = ResultsStore()
if autolag:
#search for lag length with highest information criteria
#Note: I use the same number of observations to have comparable IC
results = {}
for mlag in range(1, maxlag+1):
results[mlag] = OLS(xshort, xdall[:,:mlag+1]).fit()
if autolag.lower() == 'aic':
bestic, icbestlag = min((v.aic,k) for k,v in iteritems(results))
elif autolag.lower() == 'bic':
icbest, icbestlag = min((v.bic,k) for k,v in iteritems(results))
else:
raise ValueError("autolag can only be None, 'AIC' or 'BIC'")
#rerun ols with best ic
xdall = lagmat(x[:,None], icbestlag, trim='both')
nobs = xdall.shape[0]
xdall = np.c_[np.ones((nobs,1)), xdall]
xshort = x[-nobs:]
usedlag = icbestlag
if regresults:
resstore.results = results
else:
usedlag = maxlag
resols = OLS(xshort, xdall[:,:usedlag+1]).fit()
fval = resols.fvalue
fpval = resols.f_pvalue
lm = nobs * resols.rsquared
lmpval = stats.chi2.sf(lm, usedlag)
# Note: degrees of freedom for LM test is nvars minus constant = usedlags
#return fval, fpval, lm, lmpval
if store:
resstore.resols = resols
resstore.usedlag = usedlag
return lm, lmpval, fval, fpval, resstore
else:
return lm, lmpval, fval, fpval
[docs]def het_arch(resid, maxlag=None, autolag=None, store=False, regresults=False,
ddof=0):
"""
Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH).
Parameters
----------
resid : ndarray
residuals from an estimation, or time series
maxlag : int
highest lag to use
autolag : None or string
If None, then a fixed number of lags given by maxlag is used.
store : bool
If true then the intermediate results are also returned
ddof : int
Not Implemented Yet
If the residuals are from a regression, or ARMA estimation, then there
are recommendations to correct the degrees of freedom by the number
of parameters that have been estimated, for example ddof=p+q for an
ARMA(p,q) (need reference, based on discussion on R finance
mailinglist)
Returns
-------
lm : float
Lagrange multiplier test statistic
lmpval : float
p-value for Lagrange multiplier test
fval : float
fstatistic for F test, alternative version of the same test based on
F test for the parameter restriction
fpval : float
pvalue for F test
resstore : instance (optional)
a class instance that holds intermediate results. Only returned if
store=True
Notes
-----
verified against R:FinTS::ArchTest
"""
return acorr_lm(resid**2, maxlag=maxlag, autolag=autolag, store=store,
regresults=regresults)
[docs]def acorr_breusch_godfrey(results, nlags=None, store=False):
'''Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
Parameters
----------
results : Result instance
Estimation results for which the residuals are tested for serial
correlation
nlags : int
Number of lags to include in the auxiliary regression. (nlags is
highest lag)
store : bool
If store is true, then an additional class instance that contains
intermediate results is returned.
Returns
-------
lm : float
Lagrange multiplier test statistic
lmpval : float
p-value for Lagrange multiplier test
fval : float
fstatistic for F test, alternative version of the same test based on
F test for the parameter restriction
fpval : float
pvalue for F test
resstore : instance (optional)
a class instance that holds intermediate results. Only returned if
store=True
Notes
-----
BG adds lags of residual to exog in the design matrix for the auxiliary
regression with residuals as endog,
see Greene 12.7.1.
References
----------
Greene Econometrics, 5th edition
'''
x = np.asarray(results.resid).squeeze()
if x.ndim != 1:
raise ValueError('Model resid must be a 1d array. Cannot be used on'
' multivariate models.')
exog_old = results.model.exog
nobs = x.shape[0]
if nlags is None:
#for adf from Greene referencing Schwert 1989
nlags = np.trunc(12. * np.power(nobs/100., 1/4.))#nobs//4 #TODO: check default, or do AIC/BIC
nlags = int(nlags)
x = np.concatenate((np.zeros(nlags), x))
#xdiff = np.diff(x)
#
xdall = lagmat(x[:,None], nlags, trim='both')
nobs = xdall.shape[0]
xdall = np.c_[np.ones((nobs,1)), xdall]
xshort = x[-nobs:]
exog = np.column_stack((exog_old, xdall))
k_vars = exog.shape[1]
if store:
resstore = ResultsStore()
resols = OLS(xshort, exog).fit()
ft = resols.f_test(np.eye(nlags, k_vars, k_vars - nlags))
fval = ft.fvalue
fpval = ft.pvalue
fval = np.squeeze(fval)[()] #TODO: fix this in ContrastResults
fpval = np.squeeze(fpval)[()]
lm = nobs * resols.rsquared
lmpval = stats.chi2.sf(lm, nlags)
# Note: degrees of freedom for LM test is nvars minus constant = usedlags
#return fval, fpval, lm, lmpval
if store:
resstore.resols = resols
resstore.usedlag = nlags
return lm, lmpval, fval, fpval, resstore
else:
return lm, lmpval, fval, fpval
[docs]def het_breuschpagan(resid, exog_het):
r'''Breusch-Pagan Lagrange Multiplier test for heteroscedasticity
The tests the hypothesis that the residual variance does not depend on
the variables in x in the form
:math: \sigma_i = \sigma * f(\alpha_0 + \alpha z_i)
Homoscedasticity implies that $\alpha=0$
Parameters
----------
resid : array_like
For the Breusch-Pagan test, this should be the residual of a regression.
If an array is given in exog, then the residuals are calculated by
the an OLS regression or resid on exog. In this case resid should
contain the dependent variable. Exog can be the same as x.
TODO: I dropped the exog option, should I add it back?
exog_het : array_like
This contains variables that might create data dependent
heteroscedasticity.
Returns
-------
lm : float
lagrange multiplier statistic
lm_pvalue :float
p-value of lagrange multiplier test
fvalue : float
f-statistic of the hypothesis that the error variance does not depend
on x
f_pvalue : float
p-value for the f-statistic
Notes
-----
Assumes x contains constant (for counting dof and calculation of R^2).
In the general description of LM test, Greene mentions that this test
exaggerates the significance of results in small or moderately large
samples. In this case the F-statistic is preferable.
*Verification*
Chisquare test statistic is exactly (<1e-13) the same result as bptest
in R-stats with defaults (studentize=True).
Implementation
This is calculated using the generic formula for LM test using $R^2$
(Greene, section 17.6) and not with the explicit formula
(Greene, section 11.4.3).
The degrees of freedom for the p-value assume x is full rank.
References
----------
https://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test
Greene 5th edition
Breusch, Pagan article
'''
x = np.asarray(exog_het)
y = np.asarray(resid)**2
nobs, nvars = x.shape
resols = OLS(y, x).fit()
fval = resols.fvalue
fpval = resols.f_pvalue
lm = nobs * resols.rsquared
# Note: degrees of freedom for LM test is nvars minus constant
return lm, stats.chi2.sf(lm, nvars-1), fval, fpval
[docs]def het_white(resid, exog, retres=False):
'''White's Lagrange Multiplier Test for Heteroscedasticity
Parameters
----------
resid : array_like
residuals, square of it is used as endogenous variable
exog : array_like
possible explanatory variables for variance, squares and interaction
terms are included in the auxiliary regression.
resstore : instance (optional)
a class instance that holds intermediate results. Only returned if
store=True
Returns
-------
lm : float
lagrange multiplier statistic
lm_pvalue :float
p-value of lagrange multiplier test
fvalue : float
f-statistic of the hypothesis that the error variance does not depend
on x. This is an alternative test variant not the original LM test.
f_pvalue : float
p-value for the f-statistic
Notes
-----
assumes x contains constant (for counting dof)
question: does f-statistic make sense? constant ?
References
----------
Greene section 11.4.1 5th edition p. 222
now test statistic reproduces Greene 5th, example 11.3
'''
x = np.asarray(exog)
y = np.asarray(resid)
if x.ndim == 1:
raise ValueError('x should have constant and at least one more variable')
nobs, nvars0 = x.shape
i0,i1 = np.triu_indices(nvars0)
exog = x[:,i0]*x[:,i1]
nobs, nvars = exog.shape
assert nvars == nvars0*(nvars0-1)/2. + nvars0
resols = OLS(y**2, exog).fit()
fval = resols.fvalue
fpval = resols.f_pvalue
lm = nobs * resols.rsquared
# Note: degrees of freedom for LM test is nvars minus constant
#degrees of freedom take possible reduced rank in exog into account
#df_model checks the rank to determine df
#extra calculation that can be removed:
assert resols.df_model == np.linalg.matrix_rank(exog) - 1
lmpval = stats.chi2.sf(lm, resols.df_model)
return lm, lmpval, fval, fpval
def _het_goldfeldquandt2_old(y, x, idx, split=None, retres=False):
'''test whether variance is the same in 2 subsamples
Parameters
----------
y : array_like
endogenous variable
x : array_like
exogenous variable, regressors
idx : int
column index of variable according to which observations are
sorted for the split
split : {None, int, float}
If an int, the index at which sample is split.
If a float 0<split<1 then split is interpreted as fraction of the
observations in the first sample
retres : bool
if true, then an instance of a result class is returned,
otherwise 2 numbers, fvalue and p-value, are returned
Returns
-------
(fval, pval) or res
fval : float
value of the F-statistic
pval : float
p-value of the hypothesis that the variance in one subsample is larger
than in the other subsample
res : instance of result class
The class instance is just a storage for the intermediate and final
results that are calculated
Notes
-----
TODO:
add resultinstance - DONE
maybe add drop-middle as option
maybe allow for several breaks
recommendation for users: use this function as pattern for more flexible
split in tests, e.g. drop middle.
can do Chow test for structural break in same way
ran sanity check
'''
x = np.asarray(x)
y = np.asarray(y)
nobs, nvars = x.shape
if split is None:
split = nobs//2
elif (0<split) and (split<1):
split = int(nobs*split)
xsortind = np.argsort(x[:,idx])
y = y[xsortind]
x = x[xsortind,:]
resols1 = OLS(y[:split], x[:split]).fit()
resols2 = OLS(y[split:], x[split:]).fit()
fval = resols1.mse_resid/resols2.mse_resid
if fval>1:
fpval = stats.f.sf(fval, resols1.df_resid, resols2.df_resid)
ordering = 'larger'
else:
fval = 1./fval
fpval = stats.f.sf(fval, resols2.df_resid, resols1.df_resid)
ordering = 'smaller'
if retres:
res = ResultsStore()
res.__doc__ = 'Test Results for Goldfeld-Quandt test of heterogeneity'
res.fval = fval
res.fpval = fpval
res.df_fval = (resols2.df_resid, resols1.df_resid)
res.resols1 = resols1
res.resols2 = resols2
res.ordering = ordering
res.split = split
#res.__str__
res._str = '''The Goldfeld-Quandt test for null hypothesis that the
variance in the second subsample is %s than in the first subsample:
F-statistic =%8.4f and p-value =%8.4f''' % (ordering, fval, fpval)
return res
else:
return fval, fpval
[docs]class HetGoldfeldQuandt(object):
'''test whether variance is the same in 2 subsamples
Parameters
----------
y : array_like
endogenous variable
x : array_like
exogenous variable, regressors
idx : int
column index of variable according to which observations are
sorted for the split
split : None or integer or float in intervall (0,1)
index at which sample is split.
If 0<split<1 then split is interpreted as fraction of the observations
in the first sample
drop : None, float or int
If this is not None, then observation are dropped from the middle part
of the sorted series. If 0<split<1 then split is interpreted as fraction
of the number of observations to be dropped.
Note: Currently, observations are dropped between split and
split+drop, where split and drop are the indices (given by rounding if
specified as fraction). The first sample is [0:split], the second
sample is [split+drop:]
alternative : str, 'increasing', 'decreasing' or 'two-sided'
default is increasing. This specifies the alternative for the p-value
calculation.
Returns
-------
(fval, pval) or res
fval : float
value of the F-statistic
pval : float
p-value of the hypothesis that the variance in one subsample is larger
than in the other subsample
res : instance of result class
The class instance is just a storage for the intermediate and final
results that are calculated
Notes
-----
The Null hypothesis is that the variance in the two sub-samples are the
same. The alternative hypothesis, can be increasing, i.e. the variance in
the second sample is larger than in the first, or decreasing or two-sided.
Results are identical R, but the drop option is defined differently.
(sorting by idx not tested yet)
'''
#TODO: can do Chow test for structural break in same way
def run(self, y, x, idx=None, split=None, drop=None,
alternative='increasing', attach=True):
'''see class docstring'''
x = np.asarray(x)
y = np.asarray(y)#**2
nobs, nvars = x.shape
if split is None:
split = nobs//2
elif (0<split) and (split<1):
split = int(nobs*split)
if drop is None:
start2 = split
elif (0<drop) and (drop<1):
start2 = split + int(nobs*drop)
else:
start2 = split + drop
if idx is not None:
xsortind = np.argsort(x[:,idx])
y = y[xsortind]
x = x[xsortind,:]
resols1 = OLS(y[:split], x[:split]).fit()
resols2 = OLS(y[start2:], x[start2:]).fit()
fval = resols2.mse_resid/resols1.mse_resid
#if fval>1:
if alternative.lower() in ['i', 'inc', 'increasing']:
fpval = stats.f.sf(fval, resols1.df_resid, resols2.df_resid)
ordering = 'increasing'
elif alternative.lower() in ['d', 'dec', 'decreasing']:
fval = fval
fpval = stats.f.sf(1./fval, resols2.df_resid, resols1.df_resid)
ordering = 'decreasing'
elif alternative.lower() in ['2', '2-sided', 'two-sided']:
fpval_sm = stats.f.cdf(fval, resols2.df_resid, resols1.df_resid)
fpval_la = stats.f.sf(fval, resols2.df_resid, resols1.df_resid)
fpval = 2*min(fpval_sm, fpval_la)
ordering = 'two-sided'
else:
raise ValueError('invalid alternative')
if attach:
res = self
res.__doc__ = 'Test Results for Goldfeld-Quandt test of heterogeneity'
res.fval = fval
res.fpval = fpval
res.df_fval = (resols2.df_resid, resols1.df_resid)
res.resols1 = resols1
res.resols2 = resols2
res.ordering = ordering
res.split = split
#res.__str__
#TODO: check if string works
res._str = '''The Goldfeld-Quandt test for null hypothesis that the
variance in the second subsample is %s than in the first subsample:
F-statistic =%8.4f and p-value =%8.4f''' % (ordering, fval, fpval)
return fval, fpval, ordering
#return self
def __str__(self):
try:
return self._str
except AttributeError:
return repr(self)
#TODO: missing the alternative option in call
def __call__(self, y, x, idx=None, split=None, drop=None,
alternative='increasing'):
return self.run(y, x, idx=idx, split=split, drop=drop, attach=False,
alternative=alternative)
het_goldfeldquandt = HetGoldfeldQuandt()
[docs]def linear_harvey_collier(res):
'''Harvey Collier test for linearity
The Null hypothesis is that the regression is correctly modeled as linear.
Parameters
----------
res : Result instance
Returns
-------
tvalue : float
test statistic, based on ttest_1sample
pvalue : float
pvalue of the test
Notes
-----
TODO: add sort_by option
This test is a t-test that the mean of the recursive ols residuals is zero.
Calculating the recursive residuals might take some time for large samples.
'''
#I think this has different ddof than
#B.H. Baltagi, Econometrics, 2011, chapter 8
#but it matches Gretl and R:lmtest, pvalue at decimal=13
rr = recursive_olsresiduals(res, skip=3, alpha=0.95)
from scipy import stats
return stats.ttest_1samp(rr[3][3:], 0)
[docs]def linear_rainbow(res, frac = 0.5):
'''Rainbow test for linearity
The Null hypothesis is that the regression is correctly modelled as linear.
The alternative for which the power might be large are convex, check
Parameters
----------
res : Result instance
Returns
-------
fstat : float
test statistic based of F test
pvalue : float
pvalue of the test
'''
nobs = res.nobs
endog = res.model.endog
exog = res.model.exog
lowidx = np.ceil(0.5 * (1 - frac) * nobs).astype(int)
uppidx = np.floor(lowidx + frac * nobs).astype(int)
mi_sl = slice(lowidx, uppidx)
res_mi = OLS(endog[mi_sl], exog[mi_sl]).fit()
nobs_mi = res_mi.model.endog.shape[0]
ss_mi = res_mi.ssr
ss = res.ssr
fstat = (ss - ss_mi) / (nobs-nobs_mi) / ss_mi * res_mi.df_resid
from scipy import stats
pval = stats.f.sf(fstat, nobs - nobs_mi, res_mi.df_resid)
return fstat, pval
[docs]def linear_lm(resid, exog, func=None):
'''Lagrange multiplier test for linearity against functional alternative
limitations: Assumes currently that the first column is integer.
Currently it does not check whether the transformed variables contain NaNs,
for example log of negative number.
Parameters
----------
resid : ndarray
residuals of a regression
exog : ndarray
exogenous variables for which linearity is tested
func : callable
If func is None, then squares are used. func needs to take an array
of exog and return an array of transformed variables.
Returns
-------
lm : float
Lagrange multiplier test statistic
lm_pval : float
p-value of Lagrange multiplier tes
ftest : ContrastResult instance
the results from the F test variant of this test
Notes
-----
written to match Gretl's linearity test.
The test runs an auxiliary regression of the residuals on the combined
original and transformed regressors.
The Null hypothesis is that the linear specification is correct.
'''
from scipy import stats
if func is None:
func = lambda x: np.power(x, 2)
exog_aux = np.column_stack((exog, func(exog[:,1:])))
nobs, k_vars = exog.shape
ls = OLS(resid, exog_aux).fit()
ftest = ls.f_test(np.eye(k_vars - 1, k_vars * 2 - 1, k_vars))
lm = nobs * ls.rsquared
lm_pval = stats.chi2.sf(lm, k_vars - 1)
return lm, lm_pval, ftest
def spec_white(resid, exog):
'''
White's Two-Moment Specification Test
Parameters
----------
resid : array_like
OLS residuals
exog : array_like
OLS design matrix
Returns
-------
stat : float
test statistic
pval : float
chi-square p-value for test statistic
dof : int
degrees of freedom
Notes
-----
Implements the two-moment specification test described by White's
Theorem 2 (1980, p. 823) which compares the standard OLS covariance
estimator with White's heteroscedasticity-consistent estimator. The
test statistic is shown to be chi-square distributed.
Null hypothesis is homoscedastic and correctly specified.
Assumes the OLS design matrix contains an intercept term and at least
one variable. The intercept is removed to calculate the test statistic.
Interaction terms (squares and crosses of OLS regressors) are added to
the design matrix to calculate the test statistic.
Degrees-of-freedom (full rank) = nvar + nvar * (nvar + 1) / 2
Linearly dependent columns are removed to avoid singular matrix error.
Reference
---------
White, H. (1980). A heteroskedasticity-consistent covariance matrix
estimator and a direct test for heteroscedasticity. Econometrica,
48: 817-838.
See also het_white.
'''
x = np.asarray(exog)
e = np.asarray(resid)
if x.ndim == 1:
raise ValueError('X should have a constant and at least one variable')
# add interaction terms
i0, i1 = np.triu_indices(x.shape[1])
exog = np.delete(x[:,i0] * x[:,i1], 0, 1)
# collinearity check - see _fit_collinear
atol=1e-14
rtol=1e-13
tol = atol + rtol * exog.var(0)
r = np.linalg.qr(exog, mode='r')
mask = np.abs(r.diagonal()) < np.sqrt(tol)
exog = exog[:,np.where(~mask)[0]]
# calculate test statistic
sqe = e * e
sqmndevs = sqe - np.mean(sqe)
d = np.dot(exog.T, sqmndevs)
devx = exog - np.mean(exog, axis=0)
devx *= sqmndevs[:, None]
b = devx.T.dot(devx)
stat = d.dot(np.linalg.solve(b, d))
# chi-square test
dof = devx.shape[1]
pval = stats.chi2.sf(stat, dof)
return stat, pval, dof
def _neweywestcov(resid, x):
'''
Did not run yet
from regstats2 ::
if idx(29) % HAC (Newey West)
L = round(4*(nobs/100)^(2/9));
% L = nobs^.25; % as an alternative
hhat = repmat(residuals',p,1).*X';
xuux = hhat*hhat';
for l = 1:L;
za = hhat(:,(l+1):nobs)*hhat(:,1:nobs-l)';
w = 1 - l/(L+1);
xuux = xuux + w*(za+za');
end
d = struct;
d.covb = xtxi*xuux*xtxi;
'''
nobs = resid.shape[0] #TODO: check this can only be 1d
nlags = int(round(4*(nobs/100.)**(2/9.)))
hhat = resid * x.T
xuux = np.dot(hhat, hhat.T)
for lag in range(nlags):
za = np.dot(hhat[:,lag:nobs], hhat[:,:nobs-lag].T)
w = 1 - lag/(nobs + 1.)
xuux = xuux + np.dot(w, za+za.T)
xtxi = np.linalg.inv(np.dot(x.T, x)) #QR instead?
covbNW = np.dot(xtxi, np.dot(xuux, xtxi))
return covbNW
def _recursive_olsresiduals2(olsresults, skip):
'''this is my original version based on Greene and references
keep for now for comparison and benchmarking
'''
y = olsresults.model.endog
x = olsresults.model.exog
nobs, nvars = x.shape
rparams = np.nan * np.zeros((nobs,nvars))
rresid = np.nan * np.zeros((nobs))
rypred = np.nan * np.zeros((nobs))
rvarraw = np.nan * np.zeros((nobs))
#XTX = np.zeros((nvars,nvars))
#XTY = np.zeros((nvars))
x0 = x[:skip]
y0 = y[:skip]
XTX = np.dot(x0.T, x0)
XTY = np.dot(x0.T, y0) #xi * y #np.dot(xi, y)
beta = np.linalg.solve(XTX, XTY)
rparams[skip-1] = beta
yipred = np.dot(x[skip-1], beta)
rypred[skip-1] = yipred
rresid[skip-1] = y[skip-1] - yipred
rvarraw[skip-1] = 1+np.dot(x[skip-1],np.dot(np.linalg.inv(XTX),x[skip-1]))
for i in range(skip,nobs):
xi = x[i:i+1,:]
yi = y[i]
xxT = np.dot(xi.T, xi) #xi is 2d 1 row
xy = (xi*yi).ravel() # XTY is 1d #np.dot(xi, yi) #np.dot(xi, y)
print(xy.shape, XTY.shape)
print(XTX)
print(XTY)
beta = np.linalg.solve(XTX, XTY)
rparams[i-1] = beta #this is beta based on info up to t-1
yipred = np.dot(xi, beta)
rypred[i] = yipred
rresid[i] = yi - yipred
rvarraw[i] = 1 + np.dot(xi,np.dot(np.linalg.inv(XTX),xi.T))
XTX += xxT
XTY += xy
i = nobs
beta = np.linalg.solve(XTX, XTY)
rparams[i-1] = beta
rresid_scaled = rresid/np.sqrt(rvarraw) #this is N(0,sigma2) distributed
nrr = nobs-skip
sigma2 = rresid_scaled[skip-1:].var(ddof=1)
rresid_standardized = rresid_scaled/np.sqrt(sigma2) #N(0,1) distributed
rcusum = rresid_standardized[skip-1:].cumsum()
#confidence interval points in Greene p136 looks strange?
#this assumes sum of independent standard normal
#rcusumci = np.sqrt(np.arange(skip,nobs+1))*np.array([[-1.],[+1.]])*stats.norm.sf(0.025)
a = 1.143 #for alpha=0.99 =0.948 for alpha=0.95
#following taken from Ploberger,
crit = a*np.sqrt(nrr)
rcusumci = (a*np.sqrt(nrr) + a*np.arange(0,nobs-skip)/np.sqrt(nrr)) \
* np.array([[-1.],[+1.]])
return (rresid, rparams, rypred, rresid_standardized, rresid_scaled,
rcusum, rcusumci)
[docs]def recursive_olsresiduals(olsresults, skip=None, lamda=0.0, alpha=0.95):
'''calculate recursive ols with residuals and cusum test statistic
Parameters
----------
olsresults : instance of RegressionResults
uses only endog and exog
skip : int or None
number of observations to use for initial OLS, if None then skip is
set equal to the number of regressors (columns in exog)
lamda : float
weight for Ridge correction to initial (X'X)^{-1}
alpha : {0.95, 0.99}
confidence level of test, currently only two values supported,
used for confidence interval in cusum graph
Returns
-------
rresid : array
recursive ols residuals
rparams : array
recursive ols parameter estimates
rypred : array
recursive prediction of endogenous variable
rresid_standardized : array
recursive residuals standardized so that N(0,sigma2) distributed, where
sigma2 is the error variance
rresid_scaled : array
recursive residuals normalize so that N(0,1) distributed
rcusum : array
cumulative residuals for cusum test
rcusumci : array
confidence interval for cusum test, currently hard coded for alpha=0.95
Notes
-----
It produces same recursive residuals as other version. This version updates
the inverse of the X'X matrix and does not require matrix inversion during
updating. looks efficient but no timing
Confidence interval in Greene and Brown, Durbin and Evans is the same as
in Ploberger after a little bit of algebra.
References
----------
jplv to check formulas, follows Harvey
BigJudge 5.5.2b for formula for inverse(X'X) updating
Greene section 7.5.2
Brown, R. L., J. Durbin, and J. M. Evans. “Techniques for Testing the
Constancy of Regression Relationships over Time.”
Journal of the Royal Statistical Society. Series B (Methodological) 37,
no. 2 (1975): 149-192.
'''
y = olsresults.model.endog
x = olsresults.model.exog
nobs, nvars = x.shape
if skip is None:
skip = nvars
rparams = np.nan * np.zeros((nobs,nvars))
rresid = np.nan * np.zeros((nobs))
rypred = np.nan * np.zeros((nobs))
rvarraw = np.nan * np.zeros((nobs))
#intialize with skip observations
x0 = x[:skip]
y0 = y[:skip]
#add Ridge to start (not in jplv
XTXi = np.linalg.inv(np.dot(x0.T, x0)+lamda*np.eye(nvars))
XTY = np.dot(x0.T, y0) #xi * y #np.dot(xi, y)
#beta = np.linalg.solve(XTX, XTY)
beta = np.dot(XTXi, XTY)
#print('beta', beta
rparams[skip-1] = beta
yipred = np.dot(x[skip-1], beta)
rypred[skip-1] = yipred
rresid[skip-1] = y[skip-1] - yipred
rvarraw[skip-1] = 1 + np.dot(x[skip-1],np.dot(XTXi, x[skip-1]))
for i in range(skip,nobs):
xi = x[i:i+1,:]
yi = y[i]
#xxT = np.dot(xi.T, xi) #xi is 2d 1 row
xy = (xi*yi).ravel() # XTY is 1d #np.dot(xi, yi) #np.dot(xi, y)
#print(xy.shape, XTY.shape
#print(XTX
#print(XTY
# get prediction error with previous beta
yipred = np.dot(xi, beta)
rypred[i] = yipred
residi = yi - yipred
rresid[i] = residi
#update beta and inverse(X'X)
tmp = np.dot(XTXi, xi.T)
ft = 1 + np.dot(xi, tmp)
XTXi = XTXi - np.dot(tmp,tmp.T) / ft #BigJudge equ 5.5.15
#print('beta', beta
beta = beta + (tmp*residi / ft).ravel() #BigJudge equ 5.5.14
# #version for testing
# XTY += xy
# beta = np.dot(XTXi, XTY)
# print((tmp*yipred / ft).shape
# print('tmp.shape, ft.shape, beta.shape', tmp.shape, ft.shape, beta.shape
rparams[i] = beta
rvarraw[i] = ft
i = nobs
#beta = np.linalg.solve(XTX, XTY)
#rparams[i] = beta
rresid_scaled = rresid/np.sqrt(rvarraw) #this is N(0,sigma2) distributed
nrr = nobs-skip
#sigma2 = rresid_scaled[skip-1:].var(ddof=1) #var or sum of squares ?
# Greene has var, jplv and Ploberger have sum of squares (Ass.:mean=0)
# Gretl uses: by reverse engineering matching their numbers
sigma2 = rresid_scaled[skip:].var(ddof=1)
rresid_standardized = rresid_scaled/np.sqrt(sigma2) #N(0,1) distributed
rcusum = rresid_standardized[skip-1:].cumsum()
#confidence interval points in Greene p136 looks strange. Cleared up
#this assumes sum of independent standard normal, which does not take into
#account that we make many tests at the same time
#rcusumci = np.sqrt(np.arange(skip,nobs+1))*np.array([[-1.],[+1.]])*stats.norm.sf(0.025)
if alpha == 0.95:
a = 0.948 #for alpha=0.95
elif alpha == 0.99:
a = 1.143 #for alpha=0.99
elif alpha == 0.90:
a = 0.850
else:
raise ValueError('alpha can only be 0.9, 0.95 or 0.99')
#following taken from Ploberger,
crit = a*np.sqrt(nrr)
rcusumci = (a*np.sqrt(nrr) + 2*a*np.arange(0,nobs-skip)/np.sqrt(nrr)) \
* np.array([[-1.],[+1.]])
return (rresid, rparams, rypred, rresid_standardized, rresid_scaled,
rcusum, rcusumci)
[docs]def breaks_hansen(olsresults):
'''test for model stability, breaks in parameters for ols, Hansen 1992
Parameters
----------
olsresults : instance of RegressionResults
uses only endog and exog
Returns
-------
teststat : float
Hansen's test statistic
crit : structured array
critical values at alpha=0.95 for different nvars
pvalue Not yet
ft, s : arrays
temporary return for debugging, will be removed
Notes
-----
looks good in example, maybe not very powerful for small changes in
parameters
According to Greene, distribution of test statistics depends on nvar but
not on nobs.
Test statistic is verified against R:strucchange
References
----------
Greene section 7.5.1, notation follows Greene
'''
y = olsresults.model.endog
x = olsresults.model.exog
resid = olsresults.resid
nobs, nvars = x.shape
resid2 = resid**2
ft = np.c_[x*resid[:,None], (resid2 - resid2.mean())]
s = ft.cumsum(0)
assert (np.abs(s[-1]) < 1e10).all() #can be optimized away
F = nobs*(ft[:,:,None]*ft[:,None,:]).sum(0)
S = (s[:,:,None]*s[:,None,:]).sum(0)
H = np.trace(np.dot(np.linalg.inv(F), S))
crit95 = np.array([(2,1.9),(6,3.75),(15,3.75),(19,4.52)],
dtype = [('nobs',int), ('crit', float)])
#TODO: get critical values from Bruce Hansens' 1992 paper
return H, crit95, ft, s
[docs]def breaks_cusumolsresid(olsresidual, ddof=0):
'''cusum test for parameter stability based on ols residuals
Parameters
----------
olsresiduals : ndarray
array of residuals from an OLS estimation
ddof : int
number of parameters in the OLS estimation, used as degrees of freedom
correction for error variance.
Returns
-------
sup_b : float
test statistic, maximum of absolute value of scaled cumulative OLS
residuals
pval : float
Probability of observing the data under the null hypothesis of no
structural change, based on asymptotic distribution which is a Brownian
Bridge
crit: list
tabulated critical values, for alpha = 1%, 5% and 10%
Notes
-----
tested against R:strucchange
Not clear: Assumption 2 in Ploberger, Kramer assumes that exog x have
asymptotically zero mean, x.mean(0) = [1, 0, 0, ..., 0]
Is this really necessary? I do not see how it can affect the test statistic
under the null. It does make a difference under the alternative.
Also, the asymptotic distribution of test statistic depends on this.
From examples it looks like there is little power for standard cusum if
exog (other than constant) have mean zero.
References
----------
Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.”
Econometrica 60, no. 2 (March 1992): 271-285.
'''
resid = olsresidual.ravel()
nobs = len(resid)
nobssigma2 = (resid**2).sum()
if ddof > 0:
#print('ddof', ddof, 1. / (nobs - ddof) * nobs
nobssigma2 = nobssigma2 / (nobs - ddof) * nobs
#B is asymptotically a Brownian Bridge
B = resid.cumsum()/np.sqrt(nobssigma2) # use T*sigma directly
sup_b = np.abs(B).max() #asymptotically distributed as standard Brownian Bridge
crit = [(1,1.63), (5, 1.36), (10, 1.22)]
#Note stats.kstwobign.isf(0.1) is distribution of sup.abs of Brownian Bridge
#>>> stats.kstwobign.isf([0.01,0.05,0.1])
#array([ 1.62762361, 1.35809864, 1.22384787])
pval = stats.kstwobign.sf(sup_b)
return sup_b, pval, crit
#def breaks_cusum(recolsresid):
# '''renormalized cusum test for parameter stability based on recursive residuals
#
#
# still incorrect: in PK, the normalization for sigma is by T not T-K
# also the test statistic is asymptotically a Wiener Process, Brownian motion
# not Brownian Bridge
# for testing: result reject should be identical as in standard cusum version
#
# References
# ----------
# Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.”
# Econometrica 60, no. 2 (March 1992): 271-285.
#
# '''
# resid = recolsresid.ravel()
# nobssigma2 = (resid**2).sum()
# #B is asymptotically a Brownian Bridge
# B = resid.cumsum()/np.sqrt(nobssigma2) # use T*sigma directly
# nobs = len(resid)
# denom = 1. + 2. * np.arange(nobs)/(nobs-1.) #not sure about limits
# sup_b = np.abs(B/denom).max()
# #asymptotically distributed as standard Brownian Bridge
# crit = [(1,1.63), (5, 1.36), (10, 1.22)]
# #Note stats.kstwobign.isf(0.1) is distribution of sup.abs of Brownian Bridge
# #>>> stats.kstwobign.isf([0.01,0.05,0.1])
# #array([ 1.62762361, 1.35809864, 1.22384787])
# pval = stats.kstwobign.sf(sup_b)
# return sup_b, pval, crit
def breaks_AP(endog, exog, skip):
'''supLM, expLM and aveLM by Andrews, and Andrews,Ploberger
p-values by B Hansen
just idea for computation of sequence of tests with given change point
(Chow tests)
run recursive ols both forward and backward, match the two so they form a
split of the data, calculate sum of squares for residuals and get test
statistic for each breakpoint between skip and nobs-skip
need to put recursive ols (residuals) into separate function
alternative: B Hansen loops over breakpoints only once and updates
x'x and xe'xe
update: Andrews is based on GMM estimation not OLS, LM test statistic is
easy to compute because it only requires full sample GMM estimate (p.837)
with GMM the test has much wider applicability than just OLS
for testing loop over single breakpoint Chow test function
'''
pass
if __name__ == '__main__':
examples = ['adf']
if 'adf' in examples:
x = np.random.randn(20)
print(acorr_ljungbox(x, 4, return_df=True))
print(unitroot_adf(x))
nrepl = 100
nobs = 100
mcres = np.zeros(nrepl)
for ii in range(nrepl-1):
x = (1e-4+np.random.randn(nobs)).cumsum()
mcres[ii] = unitroot_adf(x, 2,trendorder=0, autolag=None)[0]
print((mcres<-2.57).sum())
print(np.histogram(mcres))
mcressort = np.sort(mcres)
for ratio in [0.01, 0.025, 0.05, 0.1]:
print(ratio, mcressort[int(nrepl*ratio)])
print('critical values in Green table 20.5')
print('sample size = 100')
print('with constant')
print('0.01: -19.8, 0.025: -16.3, 0.05: -13.7, 0.01: -11.0, 0.975: 0.47')
print('0.01: -3.50, 0.025: -3.17, 0.05: -2.90, 0.01: -2.58, 0.975: 0.26')
crvdg = dict([map(float,s.split(':')) for s in ('0.01: -19.8, 0.025: -16.3, 0.05: -13.7, 0.01: -11.0, 0.975: 0.47'.split(','))])
crvd = dict([map(float,s.split(':')) for s in ('0.01: -3.50, 0.025: -3.17, 0.05: -2.90, 0.01: -2.58, 0.975: 0.26'.split(','))])
'''
>>> crvd
{0.050000000000000003: -13.699999999999999, 0.97499999999999998: 0.46999999999999997, 0.025000000000000001: -16.300000000000001, 0.01: -11.0}
>>> sorted(crvd.values())
[-16.300000000000001, -13.699999999999999, -11.0, 0.46999999999999997]
'''
#for trend = 0
crit_5lags0p05 =-4.41519 + (-14.0406)/nobs + (-12.575)/nobs**2
print(crit_5lags0p05)
adfstat, _,_,resstore = unitroot_adf(x, 2,trendorder=0, autolag=None, store=1)
print((mcres>crit_5lags0p05).sum())
print(resstore.resols.model.exog[-5:])
print(x[-5:])
print(np.histogram(mcres, bins=[-np.inf, -3.5, -3.17, -2.9 , -2.58, 0.26, np.inf]))
print(mcressort[(nrepl*(np.array([0.01, 0.025, 0.05, 0.1, 0.975]))).astype(int)])
nobs = 100
x = np.ones((nobs,2))
x[:,1] = np.arange(nobs)/20.
y = x.sum(1) + 1.01*(1+1.5*(x[:,1]>10))*np.random.rand(nobs)
print(het_goldfeldquandt(y,x, 1))
y = x.sum(1) + 1.01*(1+0.5*(x[:,1]>10))*np.random.rand(nobs)
print(het_goldfeldquandt(y,x, 1))
y = x.sum(1) + 1.01*(1-0.5*(x[:,1]>10))*np.random.rand(nobs)
print(het_goldfeldquandt(y,x, 1))
print(het_breuschpagan(y,x))
print(het_white(y,x))
f, fp, fo = het_goldfeldquandt(y,x, 1)
print(f, fp)
resgq = het_goldfeldquandt(y,x, 1, retres=True)
print(resgq)
#this is just a syntax check:
print(_neweywestcov(y, x))
resols1 = OLS(y, x).fit()
print(_neweywestcov(resols1.resid, x))
print(resols1.cov_params())
print(resols1.HC0_se)
print(resols1.cov_HC0)
y = x.sum(1) + 10.*(1-0.5*(x[:,1]>10))*np.random.rand(nobs)
print(HetGoldfeldQuandt().run(y,x, 1, alternative='dec'))