Box Plots¶
The following illustrates some options for the boxplot in statsmodels. These include violin_plot
and bean_plot
.
[1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
Bean Plots¶
The following example is taken from the docstring of beanplot
.
We use the American National Election Survey 1996 dataset, which has Party Identification of respondents as independent variable and (among other data) age as dependent variable.
[2]:
data = sm.datasets.anes96.load_pandas()
party_ID = np.arange(7)
labels = ["Strong Democrat", "Weak Democrat", "Independent-Democrat",
"Independent-Independent", "Independent-Republican",
"Weak Republican", "Strong Republican"]
Group age by party ID, and create a violin plot with it:
[3]:
plt.rcParams['figure.subplot.bottom'] = 0.23 # keep labels visible
plt.rcParams['figure.figsize'] = (10.0, 8.0) # make plot larger in notebook
age = [data.exog['age'][data.endog == id] for id in party_ID]
fig = plt.figure()
ax = fig.add_subplot(111)
plot_opts={'cutoff_val':5, 'cutoff_type':'abs',
'label_fontsize':'small',
'label_rotation':30}
sm.graphics.beanplot(age, ax=ax, labels=labels,
plot_opts=plot_opts)
ax.set_xlabel("Party identification of respondent.")
ax.set_ylabel("Age")
#plt.show()
[3]:
Text(0, 0.5, 'Age')
[4]:
def beanplot(data, plot_opts={}, jitter=False):
"""helper function to try out different plot options
"""
fig = plt.figure()
ax = fig.add_subplot(111)
plot_opts_ = {'cutoff_val':5, 'cutoff_type':'abs',
'label_fontsize':'small',
'label_rotation':30}
plot_opts_.update(plot_opts)
sm.graphics.beanplot(data, ax=ax, labels=labels,
jitter=jitter, plot_opts=plot_opts_)
ax.set_xlabel("Party identification of respondent.")
ax.set_ylabel("Age")
[5]:
fig = beanplot(age, jitter=True)
[6]:
fig = beanplot(age, plot_opts={'violin_width': 0.5, 'violin_fc':'#66c2a5'})
[7]:
fig = beanplot(age, plot_opts={'violin_fc':'#66c2a5'})
[8]:
fig = beanplot(age, plot_opts={'bean_size': 0.2, 'violin_width': 0.75, 'violin_fc':'#66c2a5'})
[9]:
fig = beanplot(age, jitter=True, plot_opts={'violin_fc':'#66c2a5'})
[10]:
fig = beanplot(age, jitter=True, plot_opts={'violin_width': 0.5, 'violin_fc':'#66c2a5'})
[ ]:
Advanced Box Plots¶
Based of example script example_enhanced_boxplots.py
(by Ralf Gommers)
[11]:
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
# Necessary to make horizontal axis labels fit
plt.rcParams['figure.subplot.bottom'] = 0.23
data = sm.datasets.anes96.load_pandas()
party_ID = np.arange(7)
labels = ["Strong Democrat", "Weak Democrat", "Independent-Democrat",
"Independent-Independent", "Independent-Republican",
"Weak Republican", "Strong Republican"]
# Group age by party ID.
age = [data.exog['age'][data.endog == id] for id in party_ID]
[12]:
# Create a violin plot.
fig = plt.figure()
ax = fig.add_subplot(111)
sm.graphics.violinplot(age, ax=ax, labels=labels,
plot_opts={'cutoff_val':5, 'cutoff_type':'abs',
'label_fontsize':'small',
'label_rotation':30})
ax.set_xlabel("Party identification of respondent.")
ax.set_ylabel("Age")
ax.set_title("US national election '96 - Age & Party Identification")
[12]:
Text(0.5, 1.0, "US national election '96 - Age & Party Identification")
[13]:
# Create a bean plot.
fig2 = plt.figure()
ax = fig2.add_subplot(111)
sm.graphics.beanplot(age, ax=ax, labels=labels,
plot_opts={'cutoff_val':5, 'cutoff_type':'abs',
'label_fontsize':'small',
'label_rotation':30})
ax.set_xlabel("Party identification of respondent.")
ax.set_ylabel("Age")
ax.set_title("US national election '96 - Age & Party Identification")
[13]:
Text(0.5, 1.0, "US national election '96 - Age & Party Identification")
[14]:
# Create a jitter plot.
fig3 = plt.figure()
ax = fig3.add_subplot(111)
plot_opts={'cutoff_val':5, 'cutoff_type':'abs', 'label_fontsize':'small',
'label_rotation':30, 'violin_fc':(0.8, 0.8, 0.8),
'jitter_marker':'.', 'jitter_marker_size':3, 'bean_color':'#FF6F00',
'bean_mean_color':'#009D91'}
sm.graphics.beanplot(age, ax=ax, labels=labels, jitter=True,
plot_opts=plot_opts)
ax.set_xlabel("Party identification of respondent.")
ax.set_ylabel("Age")
ax.set_title("US national election '96 - Age & Party Identification")
[14]:
Text(0.5, 1.0, "US national election '96 - Age & Party Identification")
[15]:
# Create an asymmetrical jitter plot.
ix = data.exog['income'] < 16 # incomes < $30k
age = data.exog['age'][ix]
endog = data.endog[ix]
age_lower_income = [age[endog == id] for id in party_ID]
ix = data.exog['income'] >= 20 # incomes > $50k
age = data.exog['age'][ix]
endog = data.endog[ix]
age_higher_income = [age[endog == id] for id in party_ID]
fig = plt.figure()
ax = fig.add_subplot(111)
plot_opts['violin_fc'] = (0.5, 0.5, 0.5)
plot_opts['bean_show_mean'] = False
plot_opts['bean_show_median'] = False
plot_opts['bean_legend_text'] = 'Income < \$30k'
plot_opts['cutoff_val'] = 10
sm.graphics.beanplot(age_lower_income, ax=ax, labels=labels, side='left',
jitter=True, plot_opts=plot_opts)
plot_opts['violin_fc'] = (0.7, 0.7, 0.7)
plot_opts['bean_color'] = '#009D91'
plot_opts['bean_legend_text'] = 'Income > \$50k'
sm.graphics.beanplot(age_higher_income, ax=ax, labels=labels, side='right',
jitter=True, plot_opts=plot_opts)
ax.set_xlabel("Party identification of respondent.")
ax.set_ylabel("Age")
ax.set_title("US national election '96 - Age & Party Identification")
# Show all plots.
#plt.show()
[15]:
Text(0.5, 1.0, "US national election '96 - Age & Party Identification")