statsmodels.regression.quantile_regression.QuantRegResults

class statsmodels.regression.quantile_regression.QuantRegResults(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs)[source]

Results instance for the QuantReg model

Methods

compare_f_test(restricted)

Use F test to test whether restricted model is correct.

compare_lm_test(restricted[, demean, use_lr])

Use Lagrange Multiplier test to test a set of linear restrictions.

compare_lr_test(restricted[, large_sample])

Likelihood ratio test to test whether restricted model is correct.

conf_int([alpha, cols])

Compute the confidence interval of the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, …])

Compute the variance/covariance matrix.

f_test(r_matrix[, cov_p, scale, invcov])

Compute the F-test for a joint linear hypothesis.

get_prediction([exog, transform, weights, …])

Compute prediction results.

get_robustcov_results([cov_type, use_t])

Create new results instance with robust covariance as default.

initialize(model, params, **kwargs)

Initialize (possibly re-initialize) a Results instance.

load(fname)

Load a pickled results instance

normalized_cov_params()

See specific model class docstring

predict([exog, transform])

Call self.model.predict with self.params as the first argument.

remove_data()

Remove data arrays, all nobs arrays from result and model.

save(fname[, remove_data])

Save a pickle of this instance.

scale()

A scale factor for the covariance matrix.

summary([yname, xname, title, alpha])

Summarize the Regression Results

summary2([yname, xname, title, alpha, …])

Experimental summary function to summarize the regression results.

t_test(r_matrix[, cov_p, scale, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q.

t_test_pairwise(term_name[, method, alpha, …])

Perform pairwise t_test with multiple testing corrected p-values.

wald_test(r_matrix[, cov_p, scale, invcov, …])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, …])

Compute a sequence of Wald tests for terms over multiple columns.

Properties

HC0_se

HC1_se

HC2_se

HC3_se

aic

bic

bse

The standard errors of the parameter estimates.

centered_tss

condition_number

Return condition number of exogenous matrix.

cov_HC0

Heteroscedasticity robust covariance matrix.

cov_HC1

Heteroscedasticity robust covariance matrix.

cov_HC2

Heteroscedasticity robust covariance matrix.

cov_HC3

Heteroscedasticity robust covariance matrix.

eigenvals

Return eigenvalues sorted in decreasing order.

ess

The explained sum of squares.

f_pvalue

The p-value of the F-statistic.

fittedvalues

The predicted values for the original (unwhitened) design.

fvalue

F-statistic of the fully specified model.

llf

mse

mse_model

mse_resid

Mean squared error of the residuals.

mse_total

nobs

Number of observations n.

prsquared

pvalues

The two-tailed p values for the t-stats of the params.

resid

The residuals of the model.

resid_pearson

Residuals, normalized to have unit variance.

rsquared

rsquared_adj

ssr

Sum of squared (whitened) residuals.

tvalues

Return the t-statistic for a given parameter estimate.

uncentered_tss

use_t

Flag indicating to use the Student’s distribution in inference.

wresid

The residuals of the transformed/whitened regressand and regressor(s).