statsmodels.regression.quantile_regression.QuantRegResults¶
-
class
statsmodels.regression.quantile_regression.
QuantRegResults
(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs)[source]¶ Results instance for the QuantReg model
Methods
compare_f_test
(restricted)Use F test to test whether restricted model is correct.
compare_lm_test
(restricted[, demean, use_lr])Use Lagrange Multiplier test to test a set of linear restrictions.
compare_lr_test
(restricted[, large_sample])Likelihood ratio test to test whether restricted model is correct.
conf_int
([alpha, cols])Compute the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Compute the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
get_prediction
([exog, transform, weights, …])Compute prediction results.
get_robustcov_results
([cov_type, use_t])Create new results instance with robust covariance as default.
initialize
(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load
(fname)Load a pickled results instance
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
Remove data arrays, all nobs arrays from result and model.
save
(fname[, remove_data])Save a pickle of this instance.
scale
()A scale factor for the covariance matrix.
summary
([yname, xname, title, alpha])Summarize the Regression Results
summary2
([yname, xname, title, alpha, …])Experimental summary function to summarize the regression results.
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q.
t_test_pairwise
(term_name[, method, alpha, …])Perform pairwise t_test with multiple testing corrected p-values.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns.
Properties
The standard errors of the parameter estimates.
Return condition number of exogenous matrix.
Heteroscedasticity robust covariance matrix.
Heteroscedasticity robust covariance matrix.
Heteroscedasticity robust covariance matrix.
Heteroscedasticity robust covariance matrix.
Return eigenvalues sorted in decreasing order.
The explained sum of squares.
The p-value of the F-statistic.
The predicted values for the original (unwhitened) design.
F-statistic of the fully specified model.
Mean squared error of the residuals.
Number of observations n.
The two-tailed p values for the t-stats of the params.
The residuals of the model.
Residuals, normalized to have unit variance.
Sum of squared (whitened) residuals.
Return the t-statistic for a given parameter estimate.
Flag indicating to use the Student’s distribution in inference.
The residuals of the transformed/whitened regressand and regressor(s).