statsmodels.regression.rolling.RollingRegressionResults

class statsmodels.regression.rolling.RollingRegressionResults(model, store: statsmodels.regression.rolling.RollingStore, k_constant, use_t, cov_type)[source]

Results from rolling regressions

Parameters
modelRollingWLS

Model instance

storeRollingStore

Container for raw moving window results

k_constantbool

Flag indicating that the model contains a constant

use_tbool

Flag indicating to use the Student’s t distribution when computing p-values.

cov_typestr

Name of covariance estimator

Methods

conf_int([alpha, cols])

Construct confidence interval for the fitted parameters.

cov_params()

Estimated parameter covariance

load(fname)

Load a pickled results instance

plot_recursive_coefficient([variables, …])

Plot the recursively estimated coefficients on a given variable

remove_data()

Remove data arrays, all nobs arrays from result and model.

save(fname[, remove_data])

Save a pickle of this instance.

Properties

aic

Akaike’s information criteria.

bic

Bayes’ information criteria.

bse

The standard errors of the parameter estimates.

centered_tss

The total (weighted) sum of squares centered about the mean.

cov_type

Name of covariance estimator

df_model

The model degree of freedom.

df_resid

The residual degree of freedom.

ess

The explained sum of squares.

f_pvalue

The p-value of the F-statistic.

fvalue

F-statistic of the fully specified model.

k_constant

Flag indicating whether the model contains a constant

llf

Log-likelihood of model

mse_model

Mean squared error the model.

mse_resid

Mean squared error of the residuals.

mse_total

Total mean squared error.

nobs

Number of observations n.

params

Estimated model parameters

pvalues

The two-tailed p values for the t-stats of the params.

rsquared

R-squared of the model.

rsquared_adj

Adjusted R-squared.

ssr

Sum of squared (whitened) residuals.

tvalues

Return the t-statistic for a given parameter estimate.

uncentered_tss

Uncentered sum of squares.

use_t

Flag indicating to use the Student’s distribution in inference.