statsmodels.stats.contingency_tables.SquareTable

class statsmodels.stats.contingency_tables.SquareTable(table, shift_zeros=True)[source]

Methods for analyzing a square contingency table.

Parameters
tablearray_like

A square contingency table, or DataFrame that is converted to a square form.

shift_zerosbool

If True and any cell count is zero, add 0.5 to all values in the table.

These methods should only be used when the rows and columns of the
table have the same categories. If `table` is provided as a
Pandas DataFrame, the row and column indices will be extended to
create a square table, inserting zeros where a row or column is
missing. Otherwise the table should be provided in a square form,
with the (implicit) row and column categories appearing in the
same order.

Methods

from_data(data[, shift_zeros])

Construct a Table object from data.

homogeneity([method])

Compare row and column marginal distributions.

summary([alpha, float_format])

Produce a summary of the analysis.

symmetry([method])

Test for symmetry of a joint distribution.

test_nominal_association()

Assess independence for nominal factors.

test_ordinal_association([row_scores, …])

Assess independence between two ordinal variables.

Properties

chi2_contribs

Returns the contributions to the chi^2 statistic for independence.

cumulative_log_oddsratios

Returns cumulative log odds ratios.

cumulative_oddsratios

Returns the cumulative odds ratios for a contingency table.

fittedvalues

Returns fitted cell counts under independence.

independence_probabilities

Returns fitted joint probabilities under independence.

local_log_oddsratios

Returns local log odds ratios.

local_oddsratios

Returns local odds ratios.

marginal_probabilities

Estimate marginal probability distributions for the rows and columns.

resid_pearson

Returns Pearson residuals.

standardized_resids

Returns standardized residuals under independence.