statsmodels.tsa.stattools.acovf¶
-
statsmodels.tsa.stattools.
acovf
(x, unbiased=False, demean=True, fft=None, missing='none', nlag=None)[source]¶ Estimate autocovariances.
- Parameters
- xarray_like
Time series data. Must be 1d.
- unbiasedbool
If True, then denominators is n-k, otherwise n.
- demeanbool
If True, then subtract the mean x from each element of x.
- fftbool
If True, use FFT convolution. This method should be preferred for long time series.
- missing
str
A string in [‘none’, ‘raise’, ‘conservative’, ‘drop’] specifying how the NaNs are to be treated.
- nlag{
int
,None
} Limit the number of autocovariances returned. Size of returned array is nlag + 1. Setting nlag when fft is False uses a simple, direct estimator of the autocovariances that only computes the first nlag + 1 values. This can be much faster when the time series is long and only a small number of autocovariances are needed.
- Returns
ndarray
The estimated autocovariances.
References
- 1
Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392.