statsmodels.tsa.vector_ar.svar_model.SVARResults¶
-
class
statsmodels.tsa.vector_ar.svar_model.SVARResults(endog, endog_lagged, params, sigma_u, lag_order, A=None, B=None, A_mask=None, B_mask=None, model=None, trend='c', names=None, dates=None)[source]¶ Estimate VAR(p) process with fixed number of lags
- Parameters
- Attributes
aicAkaike information criterion
bicBayesian a.k.a.
- bse
- coefs
ndarray(pxKxK) Estimated A_i matrices, A_i = coefs[i-1]
cov_paramsEstimated variance-covariance of model coefficients
- dates
- detomega
df_modelintNumber of estimated parameters, including the intercept / trends
df_residintNumber of observations minus number of estimated parameters
- endog
- endog_lagged
- fittedvalues
fpeFinal Prediction Error (FPE)
- intercept
- info_criteria
- k_ar
int - k_trend
int - llf
- model
- names
- neqs
int Number of variables (equations)
- nobs
int - n_totobs
int - params
- k_ar
int Order of VAR process
- params
ndarray(Kp+ 1)xK A_i matrices and intercept in stacked form [int A_1 … A_p]
- pvalue
- names
list variables names
- resid
- sigma_u
ndarray(KxK) Estimate of white noise process variance Var[u_t]
- sigma_u_mle
- stderr
- trenorder
- tvalues
- y :
- ys_lagged
Methods
acf([nlags])Compute theoretical autocovariance function
acorr([nlags])Autocorrelation function
Estimated variance-covariance of model coefficients
cov_ybar()Asymptotically consistent estimate of covariance of the sample mean
fevd([periods, var_decomp])Compute forecast error variance decomposition (“fevd”)
forecast(y, steps[, exog_future])Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y
forecast_cov([steps, method])Compute forecast covariance matrices for desired number of steps
forecast_interval(y, steps[, alpha, exog_future])Construct forecast interval estimates assuming the y are Gaussian
get_eq_index(name)Return integer position of requested equation name
Long run intercept of stable VAR process
irf([periods, var_order])Analyze structural impulse responses to shocks in system
irf_errband_mc([orth, repl, steps, signif, …])Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions
irf_resim([orth, repl, steps, seed, burn, cum])Simulates impulse response function, returning an array of simulations.
is_stable([verbose])Determine stability based on model coefficients
Compute long-run effect of unit impulse
ma_rep([maxn])Compute MA(\(\infty\)) coefficient matrices
mean()Long run intercept of stable VAR process
mse(steps)Compute theoretical forecast error variance matrices
orth_ma_rep([maxn, P])Unavailable for SVAR
plot()Plot input time series
plot_acorr([nlags, resid, linewidth])Plot autocorrelation of sample (endog) or residuals
plot_forecast(steps[, alpha, plot_stderr])Plot forecast
plot_sample_acorr([nlags, linewidth])Plot sample autocorrelation function
plotsim([steps, offset, seed])Plot a simulation from the VAR(p) process for the desired number of steps
reorder(order)Reorder variables for structural specification
resid_acorr([nlags])Compute sample autocorrelation (including lag 0)
resid_acov([nlags])Compute centered sample autocovariance (including lag 0)
sample_acorr([nlags])Sample acorr
sample_acov([nlags])Sample acov
simulate_var([steps, offset, seed])simulate the VAR(p) process for the desired number of steps
sirf_errband_mc([orth, repl, steps, signif, …])Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions
summary()Compute console output summary of estimates
svar_ma_rep([maxn, P])Compute Structural MA coefficient matrices using MLE of A, B
test_causality(caused[, causing, kind, signif])Test Granger causality
test_inst_causality(causing[, signif])Test for instantaneous causality
test_normality([signif])Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test.
test_whiteness([nlags, signif, adjusted])Residual whiteness tests using Portmanteau test
to_vecm()Properties
Akaike information criterion
Bayesian a.k.a.
Standard errors of coefficients, reshaped to match in size
Return determinant of white noise covariance with degrees of freedom correction:
Number of estimated parameters, including the intercept / trends
Number of observations minus number of estimated parameters
The predicted insample values of the response variables of the model.
Final Prediction Error (FPE)
Hannan-Quinn criterion
information criteria for lagorder selection
Compute VAR(p) loglikelihood
Two-sided p-values for model coefficients from Student t-distribution
pvalues_endog_laggd
Residuals of response variable resulting from estimated coefficients
Centered residual correlation matrix
The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 …
(Biased) maximum likelihood estimate of noise process covariance
Standard errors of coefficients, reshaped to match in size
Stderr_dt
Stderr_endog_lagged
Compute t-statistics.