statsmodels.tsa.arima_model.ARIMAResults¶
-
class
statsmodels.tsa.arima_model.ARIMAResults(model, params, normalized_cov_params=None, scale=1.0)[source]¶ Methods
arfreq()Returns the frequency of the AR roots.
bse()The standard errors of the parameter estimates.
conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters.
Returns the variance/covariance matrix.
f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
forecast([steps, exog, alpha])Out-of-sample forecasts
initialize(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf()Log-likelihood of model
load(fname)load a pickle, (class method)
mafreq()Returns the frequency of the MA roots.
See specific model class docstring
plot_predict([start, end, exog, dynamic, …])Plot forecasts
predict([start, end, exog, typ, dynamic])ARIMA model in-sample and out-of-sample prediction
pvalues()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save(fname[, remove_data])save a pickle of this instance
summary([alpha])Summarize the Model
summary2([title, alpha, float_format])Experimental summary function for ARIMA Results
t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues()Return the t-statistic for a given parameter estimate.
wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
aic
arparams
arroots
bic
fittedvalues
hqic
maparams
maroots
resid
