statsmodels.tsa.vector_ar.var_model.VARResults¶
- 
class 
statsmodels.tsa.vector_ar.var_model.VARResults(endog, endog_lagged, params, sigma_u, lag_order, model=None, trend='c', names=None, dates=None, exog=None)[source]¶ Estimate VAR(p) process with fixed number of lags
- Parameters
 - endogarray
 - endog_laggedarray
 - paramsarray
 - sigma_uarray
 - lag_orderint
 - modelVAR model instance
 - trendstr {‘nc’, ‘c’, ‘ct’}
 - namesarray-like
 List of names of the endogenous variables in order of appearance in endog.
- dates
 - exogarray
 
- Attributes
 - coefsndarray (p x K x K)
 Estimated A_i matrices, A_i = coefs[i-1]
- dates
 - endog
 - endog_lagged
 - k_arint
 Order of VAR process
- k_trendint
 - model
 - names
 - neqsint
 Number of variables (equations)
- nobsint
 - n_totobsint
 - paramsndarray (Kp + 1) x K
 A_i matrices and intercept in stacked form [int A_1 … A_p]
- nameslist
 variables names
residResiduals of response variable resulting from estimated coefficients
- sigma_undarray (K x K)
 Estimate of white noise process variance Var[u_t]
tvaluesCompute t-statistics.
- y :
 - ys_lagged
 
Methods
acf([nlags])Compute theoretical autocovariance function
acorr([nlags])Compute theoretical autocorrelation function
bse()Standard errors of coefficients, reshaped to match in size
Estimated variance-covariance of model coefficients
cov_ybar()Asymptotically consistent estimate of covariance of the sample mean
detomega()Return determinant of white noise covariance with degrees of freedom correction:
fevd([periods, var_decomp])Compute forecast error variance decomposition (“fevd”)
The predicted insample values of the response variables of the model.
forecast(y, steps[, exog_future])Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y
forecast_cov([steps, method])Compute forecast covariance matrices for desired number of steps
forecast_interval(y, steps[, alpha, exog_future])Construct forecast interval estimates assuming the y are Gaussian
get_eq_index(name)Return integer position of requested equation name
information criteria for lagorder selection
Long run intercept of stable VAR process
irf([periods, var_decomp, var_order])Analyze impulse responses to shocks in system
irf_errband_mc([orth, repl, T, signif, …])Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions
irf_resim([orth, repl, T, seed, burn, cum])Simulates impulse response function, returning an array of simulations.
is_stable([verbose])Determine stability based on model coefficients
llf()Compute VAR(p) loglikelihood
Compute long-run effect of unit impulse
ma_rep([maxn])Compute MA(\(\infty\)) coefficient matrices
mean()Long run intercept of stable VAR process
mse(steps)Compute theoretical forecast error variance matrices
orth_ma_rep([maxn, P])Compute orthogonalized MA coefficient matrices using P matrix such that \(\Sigma_u = PP^\prime\).
plot()Plot input time series
plot_acorr([nlags, resid, linewidth])Plot autocorrelation of sample (endog) or residuals
plot_forecast(steps[, alpha, plot_stderr])Plot forecast
plot_sample_acorr([nlags, linewidth])Plot theoretical autocorrelation function
plotsim([steps, offset, seed])Plot a simulation from the VAR(p) process for the desired number of steps
pvalues()Two-sided p-values for model coefficients from Student t-distribution
pvalues_endog_laggd
reorder(order)Reorder variables for structural specification
resid()Residuals of response variable resulting from estimated coefficients
resid_acorr([nlags])Compute sample autocorrelation (including lag 0)
resid_acov([nlags])Compute centered sample autocovariance (including lag 0)
Centered residual correlation matrix
roots()The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 …
sample_acorr([nlags])Sample acorr
sample_acov([nlags])Sample acov
(Biased) maximum likelihood estimate of noise process covariance
simulate_var([steps, offset, seed])simulate the VAR(p) process for the desired number of steps
stderr()Standard errors of coefficients, reshaped to match in size
Stderr_dt
Stderr_endog_lagged
summary()Compute console output summary of estimates
test_causality(caused[, causing, kind, signif])Test Granger causality
test_inst_causality(causing[, signif])Test for instantaneous causality
test_normality([signif])Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test.
test_whiteness([nlags, signif, adjusted])Residual whiteness tests using Portmanteau test
to_vecm()tvalues()Compute t-statistics.
