statsmodels.base.distributed_estimation.DistributedResults¶
-
class
statsmodels.base.distributed_estimation.DistributedResults(model, params)[source]¶ Class to contain model results
- Parameters
- modelclass instance
class instance for model used for distributed data, this particular instance uses fake data and is really only to allow use of methods like predict.
- paramsarray
parameter estimates from the fit model.
Methods
bse()The standard errors of the parameter estimates.
conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
initialize(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf()Log-likelihood of model
load(fname)load a pickle, (class method)
See specific model class docstring
predict(exog, *args, **kwargs)Calls self.model.predict for the provided exog.
pvalues()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save(fname[, remove_data])save a pickle of this instance
summary()Summary
t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues()Return the t-statistic for a given parameter estimate.
wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
