statsmodels.sandbox.distributions.extras.SkewNorm2_gen¶
- 
class 
statsmodels.sandbox.distributions.extras.SkewNorm2_gen(momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None, seed=None)[source]¶ univariate Skew-Normal distribution of Azzalini
class follows scipy.stats.distributions pattern
- Attributes
 random_stateGet or set the RandomState object for generating random variates.
Methods
__call__(*args, **kwds)Freeze the distribution for the given arguments.
cdf(x, *args, **kwds)Cumulative distribution function of the given RV.
entropy(*args, **kwds)Differential entropy of the RV.
expect([func, args, loc, scale, lb, ub, …])Calculate expected value of a function with respect to the distribution by numerical integration.
fit(data, *args, **kwds)Return MLEs for shape (if applicable), location, and scale parameters from data.
fit_loc_scale(data, *args)Estimate loc and scale parameters from data using 1st and 2nd moments.
freeze(*args, **kwds)Freeze the distribution for the given arguments.
interval(alpha, *args, **kwds)Confidence interval with equal areas around the median.
isf(q, *args, **kwds)Inverse survival function (inverse of sf) at q of the given RV.
logcdf(x, *args, **kwds)Log of the cumulative distribution function at x of the given RV.
logpdf(x, *args, **kwds)Log of the probability density function at x of the given RV.
logsf(x, *args, **kwds)Log of the survival function of the given RV.
mean(*args, **kwds)Mean of the distribution.
median(*args, **kwds)Median of the distribution.
moment(n, *args, **kwds)n-th order non-central moment of distribution.
nnlf(theta, x)Return negative loglikelihood function.
pdf(x, *args, **kwds)Probability density function at x of the given RV.
ppf(q, *args, **kwds)Percent point function (inverse of cdf) at q of the given RV.
rvs(*args, **kwds)Random variates of given type.
sf(x, *args, **kwds)Survival function (1 - cdf) at x of the given RV.
stats(*args, **kwds)Some statistics of the given RV.
std(*args, **kwds)Standard deviation of the distribution.
var(*args, **kwds)Variance of the distribution.
