statsmodels.sandbox.regression.gmm.GMMResults¶
-
class
statsmodels.sandbox.regression.gmm.GMMResults(*args, **kwds)[source]¶ just a storage class right now
- Attributes
bse_standard error of the parameter estimates
Methods
bse()The standard errors of the parameter estimates.
calc_cov_params(moms, gradmoms[, weights, …])calculate covariance of parameter estimates
compare_j(other)overidentification test for comparing two nested gmm estimates
conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
get_bse(**kwds)standard error of the parameter estimates with options
initialize(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
jtest()overidentification test
jval()nobs_moms attached by momcond_mean
llf()Log-likelihood of model
load(fname)load a pickle, (class method)
See specific model class docstring
predict([exog, transform])Call self.model.predict with self.params as the first argument.
pvalues()The two-tailed p values for the t-stats of the params.
q()Objective function at params
remove data arrays, all nobs arrays from result and model
save(fname[, remove_data])save a pickle of this instance
summary([yname, xname, title, alpha])Summarize the Regression Results
t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues()Return the t-statistic for a given parameter estimate.
wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
