statsmodels.tsa.statespace.kalman_smoother.SmootherResults¶
- 
class 
statsmodels.tsa.statespace.kalman_smoother.SmootherResults(model)[source]¶ Results from applying the Kalman smoother and/or filter to a state space model.
- Parameters
 - modelRepresentation
 A Statespace representation
- Attributes
 - nobsint
 Number of observations.
- k_endogint
 The dimension of the observation series.
- k_statesint
 The dimension of the unobserved state process.
- k_posdefint
 The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation.
- dtypedtype
 Datatype of representation matrices
- prefixstr
 BLAS prefix of representation matrices
- shapesdictionary of name:tuple
 A dictionary recording the shapes of each of the representation matrices as tuples.
- endogarray
 The observation vector.
- designarray
 The design matrix, \(Z\).
- obs_interceptarray
 The intercept for the observation equation, \(d\).
- obs_covarray
 The covariance matrix for the observation equation \(H\).
- transitionarray
 The transition matrix, \(T\).
- state_interceptarray
 The intercept for the transition equation, \(c\).
- selectionarray
 The selection matrix, \(R\).
- state_covarray
 The covariance matrix for the state equation \(Q\).
- missingarray of bool
 An array of the same size as endog, filled with boolean values that are True if the corresponding entry in endog is NaN and False otherwise.
- nmissingarray of int
 An array of size nobs, where the ith entry is the number (between 0 and k_endog) of NaNs in the ith row of the endog array.
- time_invariantbool
 Whether or not the representation matrices are time-invariant
- initializationstr
 Kalman filter initialization method.
- initial_statearray_like
 The state vector used to initialize the Kalamn filter.
- initial_state_covarray_like
 The state covariance matrix used to initialize the Kalamn filter.
- filter_methodint
 Bitmask representing the Kalman filtering method
- inversion_methodint
 Bitmask representing the method used to invert the forecast error covariance matrix.
- stability_methodint
 Bitmask representing the methods used to promote numerical stability in the Kalman filter recursions.
- conserve_memoryint
 Bitmask representing the selected memory conservation method.
- tolerancefloat
 The tolerance at which the Kalman filter determines convergence to steady-state.
- loglikelihood_burnint
 The number of initial periods during which the loglikelihood is not recorded.
- convergedbool
 Whether or not the Kalman filter converged.
- period_convergedint
 The time period in which the Kalman filter converged.
- filtered_statearray
 The filtered state vector at each time period.
- filtered_state_covarray
 The filtered state covariance matrix at each time period.
- predicted_statearray
 The predicted state vector at each time period.
- predicted_state_covarray
 The predicted state covariance matrix at each time period.
kalman_gainarrayKalman gain matrices
- forecastsarray
 The one-step-ahead forecasts of observations at each time period.
- forecasts_errorarray
 The forecast errors at each time period.
- forecasts_error_covarray
 The forecast error covariance matrices at each time period.
- loglikelihoodarray
 The loglikelihood values at each time period.
- collapsed_forecastsarray
 If filtering using collapsed observations, stores the one-step-ahead forecasts of collapsed observations at each time period.
- collapsed_forecasts_errorarray
 If filtering using collapsed observations, stores the one-step-ahead forecast errors of collapsed observations at each time period.
- collapsed_forecasts_error_covarray
 If filtering using collapsed observations, stores the one-step-ahead forecast error covariance matrices of collapsed observations at each time period.
- standardized_forecast_errorarray
 The standardized forecast errors
- smoother_outputint
 Bitmask representing the generated Kalman smoothing output
- scaled_smoothed_estimatorarray
 The scaled smoothed estimator at each time period.
- scaled_smoothed_estimator_covarray
 The scaled smoothed estimator covariance matrices at each time period.
- smoothing_errorarray
 The smoothing error covariance matrices at each time period.
- smoothed_statearray
 The smoothed state at each time period.
- smoothed_state_covarray
 The smoothed state covariance matrices at each time period.
- smoothed_state_autocovarray
 The smoothed state lago-one autocovariance matrices at each time period: \(Cov(\alpha_{t+1}, \alpha_t)\).
- smoothed_measurement_disturbancearray
 The smoothed measurement at each time period.
- smoothed_state_disturbancearray
 The smoothed state at each time period.
- smoothed_measurement_disturbance_covarray
 The smoothed measurement disturbance covariance matrices at each time period.
- smoothed_state_disturbance_covarray
 The smoothed state disturbance covariance matrices at each time period.
Methods
predict([start, end, dynamic])In-sample and out-of-sample prediction for state space models generally
update_filter(kalman_filter)Update the filter results
update_representation(model[, only_options])Update the results to match a given model
update_smoother(smoother)Update the smoother results
