statsmodels.genmod.qif.QIF¶
-
class
statsmodels.genmod.qif.QIF(endog, exog, groups, family=None, cov_struct=None, missing='none', **kwargs)[source]¶ Fit a regression model using quadratic inference functions (QIF).
QIF is an alternative to GEE that can be more efficient, and that offers different approaches for model selection and inference.
- Parameters
- endogarray-like
The dependent variables of the regression.
- exogarray-like
The independent variables of the regression.
- groupsarray-like
Labels indicating which group each observation belongs to. Observations in different groups should be independent.
- familygenmod family
An instance of a GLM family.
- cov_structQIFCovariance instance
An instance of a QIFCovariance.
References
A. Qu, B. Lindsay, B. Li (2000). Improving Generalized Estimating Equations using Quadratic Inference Functions, Biometrika 87:4. www.jstor.org/stable/2673612
- Attributes
endog_namesNames of endogenous variables
exog_namesNames of exogenous variables
Methods
estimate_scale(params)Estimate the dispersion/scale.
fit([maxiter, start_params, tol, gtol, …])Fit a GLM to correlated data using QIF.
from_formula(formula, groups, data[, subset])Create a QIF model instance from a formula and dataframe.
objective(params)Calculate the gradient of the QIF objective function.
predict(params[, exog])After a model has been fit predict returns the fitted values.
