statsmodels.genmod.qif.QIFResults¶
-
class
statsmodels.genmod.qif.QIFResults(model, params, cov_params, scale, use_t=False, **kwds)[source]¶ Results class for QIF Regression
Methods
aic()An AIC-like statistic for models fit using QIF.
bic()A BIC-like statistic for models fit using QIF.
bse()The standard errors of the parameter estimates.
conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Returns the fitted values from the model.
initialize(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf()Log-likelihood of model
load(fname)load a pickle, (class method)
See specific model class docstring
predict([exog, transform])Call self.model.predict with self.params as the first argument.
pvalues()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save(fname[, remove_data])save a pickle of this instance
summary([yname, xname, title, alpha])Summarize the QIF regression results
t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues()Return the t-statistic for a given parameter estimate.
wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
