statsmodels.tsa.statespace.mlemodel.MLEResults¶
-
class
statsmodels.tsa.statespace.mlemodel.MLEResults(model, params, results, cov_type='opg', cov_kwds=None, **kwargs)[source]¶ Class to hold results from fitting a state space model.
- Parameters
- modelMLEModel instance
The fitted model instance
- paramsarray
Fitted parameters
- filter_resultsKalmanFilter instance
The underlying state space model and Kalman filter output
See also
MLEModel,statsmodels.tsa.statespace.kalman_filter.FilterResults,statsmodels.tsa.statespace.representation.FrozenRepresentation- Attributes
- modelModel instance
A reference to the model that was fit.
- filter_resultsKalmanFilter instance
The underlying state space model and Kalman filter output
- nobsfloat
The number of observations used to fit the model.
- paramsarray
The parameters of the model.
- scalefloat
This is currently set to 1.0 unless the model uses concentrated filtering.
Methods
aic()(float) Akaike Information Criterion
bic()(float) Bayes Information Criterion
bse()The standard errors of the parameter estimates.
conf_int([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
(array) The variance / covariance matrix.
(array) The variance / covariance matrix.
(array) The variance / covariance matrix.
(array) The QMLE variance / covariance matrix.
(array) The QMLE variance / covariance matrix.
(array) The QMLE variance / covariance matrix.
f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
(array) The predicted values of the model.
forecast([steps])Out-of-sample forecasts
get_forecast([steps])Out-of-sample forecasts
get_prediction([start, end, dynamic, index])In-sample prediction and out-of-sample forecasting
hqic()(float) Hannan-Quinn Information Criterion
impulse_responses([steps, impulse, …])Impulse response function
info_criteria(criteria[, method])Information criteria
initialize(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf()(float) The value of the log-likelihood function evaluated at params.
llf_obs()(float) The value of the log-likelihood function evaluated at params.
load(fname)load a pickle, (class method)
(float) The number of observations during which the likelihood is not evaluated.
See specific model class docstring
plot_diagnostics([variable, lags, fig, figsize])Diagnostic plots for standardized residuals of one endogenous variable
predict([start, end, dynamic])In-sample prediction and out-of-sample forecasting
pvalues()(array) The p-values associated with the z-statistics of the coefficients.
remove data arrays, all nobs arrays from result and model
resid()(array) The model residuals.
save(fname[, remove_data])save a pickle of this instance
simulate(nsimulations[, measurement_shocks, …])Simulate a new time series following the state space model
summary([alpha, start, title, model_name, …])Summarize the Model
t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
test_heteroskedasticity(method[, …])Test for heteroskedasticity of standardized residuals
test_normality(method)Test for normality of standardized residuals.
test_serial_correlation(method[, lags])Ljung-box test for no serial correlation of standardized residuals
tvalues()Return the t-statistic for a given parameter estimate.
wald_test(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
zvalues()(array) The z-statistics for the coefficients.
