statsmodels.discrete.discrete_model.Probit.score_obs¶
-
Probit.score_obs(params)[source]¶ Probit model Jacobian for each observation
Parameters: params : array-like
The parameters of the model
Returns: jac : ndarray, (nobs, k_vars)
The derivative of the loglikelihood for each observation evaluated at params.
Notes
![\frac{\partial\ln L_{i}}{\partial\beta}=\left[\frac{q_{i}\phi\left(q_{i}x_{i}^{\prime}\beta\right)}{\Phi\left(q_{i}x_{i}^{\prime}\beta\right)}\right]x_{i}](../_images/math/52f6d4afe4b2228a0bbc4db6dcda282d2e547cbe.png)
for observations

Where
. This simplification comes from the fact that the
normal distribution is symmetric.
