statsmodels.multivariate.cancorr.CanCorr¶
- 
class 
statsmodels.multivariate.cancorr.CanCorr(endog, exog, tolerance=1e-08, missing='none', hasconst=None, **kwargs)[source]¶ Canonical correlation analysis using singluar value decomposition
For matrices exog=x and endog=y, find projections x_cancoef and y_cancoef such that:
x1 = x * x_cancoef, x1’ * x1 is identity matrix y1 = y * y_cancoef, y1’ * y1 is identity matrixand the correlation between x1 and y1 is maximized.
- 
endog¶ array – See Parameters.
- 
exog¶ array – See Parameters.
- 
cancorr¶ array – The canonical correlation values
- 
y_cancoeff¶ array – The canonical coeefficients for endog
- 
x_cancoeff¶ array – The canonical coefficients for exog
References
[*] http://numerical.recipes/whp/notes/CanonCorrBySVD.pdf [†] http://www.csun.edu/~ata20315/psy524/docs/Psy524%20Lecture%208%20CC.pdf [‡] http://www.mathematica-journal.com/2014/06/canonical-correlation-analysis/ Methods
corr_test()Approximate F test Perform multivariate statistical tests of the hypothesis that there is no canonical correlation between endog and exog. fit()Fit a model to data. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. predict(params[, exog])After a model has been fit predict returns the fitted values. Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables - 
 
