Multivariate Statistics multivariate
This section includes methods and algorithms from multivariate statistics.
Principal Component Analysis
PCA(data[, ncomp, standardize, demean, …]) | 
Principal Component Analysis | 
pca(data[, ncomp, standardize, demean, …]) | 
Principal Component Analysis | 
 
Factor Analysis
Factor([endog, n_factor, corr, method, smc, …]) | 
Factor analysis | 
FactorResults(factor) | 
Factor results class | 
 
Factor Rotation
rotate_factors(A, method, *method_args, …) | 
Subroutine for orthogonal and oblique rotation of the matrix \(A\). | 
target_rotation(A, H[, full_rank]) | 
Analytically performs orthogonal rotations towards a target matrix, i.e., we minimize: | 
procrustes(A, H) | 
Analytically solves the following Procrustes problem: | 
promax(A[, k]) | 
Performs promax rotation of the matrix \(A\). | 
 
Canonical Correlation
CanCorr(endog, exog[, tolerance, missing, …]) | 
Canonical correlation analysis using singluar value decomposition | 
 
MANOVA
MANOVA(endog, exog[, missing, hasconst]) | 
Multivariate analysis of variance The implementation of MANOVA is based on multivariate regression and does not assume that the explanatory variables are categorical. | 
 
MultivariateOLS
_MultivariateOLS is a model class with limited features. Currently it
supports multivariate hypothesis tests and is used as backend for MANOVA.