statsmodels.multivariate.multivariate_ols._MultivariateOLS¶
- 
class 
statsmodels.multivariate.multivariate_ols._MultivariateOLS(endog, exog, missing='none', hasconst=None, **kwargs)[source]¶ Multivariate linear model via least squares
Parameters: - endog (array_like) – Dependent variables. A nobs x k_endog array where nobs is the number of observations and k_endog is the number of dependent variables
 - exog (array_like) – Independent variables. A nobs x k_exog array where nobs is the number of observations and k_exog is the number of independent variables. An intercept is not included by default and should be added by the user (models specified using a formula include an intercept by default)
 
- 
endog¶ array – See Parameters.
- 
exog¶ array – See Parameters.
Methods
fit([method])Fit a model to data. from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe. predict(params[, exog])After a model has been fit predict returns the fitted values. Attributes
endog_namesNames of endogenous variables exog_namesNames of exogenous variables 
