Source code for statsmodels.discrete.discrete_model

"""
Limited dependent variable and qualitative variables.

Includes binary outcomes, count data, (ordered) ordinal data and limited
dependent variables.

General References
--------------------

A.C. Cameron and P.K. Trivedi.  `Regression Analysis of Count Data`.
    Cambridge, 1998

G.S. Madalla. `Limited-Dependent and Qualitative Variables in Econometrics`.
    Cambridge, 1983.

W. Greene. `Econometric Analysis`. Prentice Hall, 5th. edition. 2003.
"""
__all__ = ["Poisson", "Logit", "Probit", "MNLogit", "NegativeBinomial",
           "GeneralizedPoisson", "NegativeBinomialP", "CountModel"]

import numpy as np
from pandas import get_dummies, MultiIndex

from scipy.special import gammaln, digamma, polygamma, loggamma
from scipy import stats, special
from scipy.stats import nbinom

from statsmodels.compat.pandas import Appender

import statsmodels.tools.tools as tools
from statsmodels.tools import data as data_tools
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.sm_exceptions import (PerfectSeparationError,
                                             SpecificationWarning)
from statsmodels.tools.numdiff import approx_fprime_cs
import statsmodels.base.model as base
from statsmodels.base.data import handle_data  # for mnlogit
import statsmodels.regression.linear_model as lm
import statsmodels.base.wrapper as wrap

from statsmodels.base.l1_slsqp import fit_l1_slsqp
from statsmodels.distributions import genpoisson_p

try:
    import cvxopt  # noqa:F401
    have_cvxopt = True
except ImportError:
    have_cvxopt = False

import warnings

#TODO: When we eventually get user-settable precision, we need to change
#      this
FLOAT_EPS = np.finfo(float).eps

#TODO: add options for the parameter covariance/variance
# ie., OIM, EIM, and BHHH see Green 21.4

_discrete_models_docs = """
"""

_discrete_results_docs = """
    %(one_line_description)s

    Parameters
    ----------
    model : A DiscreteModel instance
    params : array_like
        The parameters of a fitted model.
    hessian : array_like
        The hessian of the fitted model.
    scale : float
        A scale parameter for the covariance matrix.

    Attributes
    ----------
    df_resid : float
        See model definition.
    df_model : float
        See model definition.
    llf : float
        Value of the loglikelihood
    %(extra_attr)s"""

_l1_results_attr = """    nnz_params : int
        The number of nonzero parameters in the model.  Train with
        trim_params == True or else numerical error will distort this.
    trimmed : bool array
        trimmed[i] == True if the ith parameter was trimmed from the model."""

_get_start_params_null_docs = """
Compute one-step moment estimator for null (constant-only) model

This is a preliminary estimator used as start_params.

Returns
-------
params : ndarray
    parameter estimate based one one-step moment matching

"""

# helper for MNLogit (will be generally useful later)

def _numpy_to_dummies(endog):
    if endog.dtype.kind in ['S', 'O']:
        endog_dummies, ynames = tools.categorical(endog, drop=True,
                                                  dictnames=True)
    elif endog.ndim == 2:
        endog_dummies = endog
        ynames = range(endog.shape[1])
    else:
        endog_dummies, ynames = tools.categorical(endog, drop=True,
                                                  dictnames=True)
    return endog_dummies, ynames


def _pandas_to_dummies(endog):
    if endog.ndim == 2:
        if endog.shape[1] == 1:
            yname = endog.columns[0]
            endog_dummies = get_dummies(endog.iloc[:, 0])
        else:  # series
            yname = 'y'
            endog_dummies = endog
    else:
        yname = endog.name
        endog_dummies = get_dummies(endog)
    ynames = endog_dummies.columns.tolist()

    return endog_dummies, ynames, yname


def _validate_l1_method(method):
    """
    As of 0.10.0, the supported values for `method` in `fit_regularized`
    are "l1" and "l1_cvxopt_cp".  If an invalid value is passed, raise
    with a helpful error message

    Parameters
    ----------
    method : str

    Raises
    ------
    ValueError
    """
    if method not in ['l1', 'l1_cvxopt_cp']:
        raise ValueError('`method` = {method} is not supported, use either '
                         '"l1" or "l1_cvxopt_cp"'.format(method=method))


#### Private Model Classes ####


[docs]class DiscreteModel(base.LikelihoodModel): """ Abstract class for discrete choice models. This class does not do anything itself but lays out the methods and call signature expected of child classes in addition to those of statsmodels.model.LikelihoodModel. """ def __init__(self, endog, exog, **kwargs): super(DiscreteModel, self).__init__(endog, exog, **kwargs) self.raise_on_perfect_prediction = True def initialize(self): """ Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. """ # assumes constant rank = np.linalg.matrix_rank(self.exog) self.df_model = float(rank - 1) self.df_resid = float(self.exog.shape[0] - rank) def cdf(self, X): """ The cumulative distribution function of the model. """ raise NotImplementedError def pdf(self, X): """ The probability density (mass) function of the model. """ raise NotImplementedError def _check_perfect_pred(self, params, *args): endog = self.endog fittedvalues = self.cdf(np.dot(self.exog, params[:self.exog.shape[1]])) if (self.raise_on_perfect_prediction and np.allclose(fittedvalues - endog, 0)): msg = "Perfect separation detected, results not available" raise PerfectSeparationError(msg) @Appender(base.LikelihoodModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): """ Fit the model using maximum likelihood. The rest of the docstring is from statsmodels.base.model.LikelihoodModel.fit """ if callback is None: callback = self._check_perfect_pred else: pass # TODO: make a function factory to have multiple call-backs mlefit = super(DiscreteModel, self).fit( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) return mlefit # It is up to subclasses to wrap results def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=True, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, qc_verbose=False, **kwargs): """ Fit the model using a regularized maximum likelihood. The regularization method AND the solver used is determined by the argument method. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. method : 'l1' or 'l1_cvxopt_cp' See notes for details. maxiter : {int, 'defined_by_method'} Maximum number of iterations to perform. If 'defined_by_method', then use method defaults (see notes). full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. fargs : tuple Extra arguments passed to the likelihood function, i.e., loglike(x,*args). callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. alpha : non-negative scalar or numpy array (same size as parameters) The weight multiplying the l1 penalty term. trim_mode : 'auto, 'size', or 'off' If not 'off', trim (set to zero) parameters that would have been zero if the solver reached the theoretical minimum. If 'auto', trim params using the Theory above. If 'size', trim params if they have very small absolute value. size_trim_tol : float or 'auto' (default = 'auto') Tolerance used when trim_mode == 'size'. auto_trim_tol : float Tolerance used when trim_mode == 'auto'. qc_tol : float Print warning and do not allow auto trim when (ii) (above) is violated by this much. qc_verbose : bool If true, print out a full QC report upon failure. **kwargs Additional keyword arguments used when fitting the model. Returns ------- Results A results instance. Notes ----- Using 'l1_cvxopt_cp' requires the cvxopt module. Extra parameters are not penalized if alpha is given as a scalar. An example is the shape parameter in NegativeBinomial `nb1` and `nb2`. Optional arguments for the solvers (available in Results.mle_settings):: 'l1' acc : float (default 1e-6) Requested accuracy as used by slsqp 'l1_cvxopt_cp' abstol : float absolute accuracy (default: 1e-7). reltol : float relative accuracy (default: 1e-6). feastol : float tolerance for feasibility conditions (default: 1e-7). refinement : int number of iterative refinement steps when solving KKT equations (default: 1). Optimization methodology With :math:`L` the negative log likelihood, we solve the convex but non-smooth problem .. math:: \\min_\\beta L(\\beta) + \\sum_k\\alpha_k |\\beta_k| via the transformation to the smooth, convex, constrained problem in twice as many variables (adding the "added variables" :math:`u_k`) .. math:: \\min_{\\beta,u} L(\\beta) + \\sum_k\\alpha_k u_k, subject to .. math:: -u_k \\leq \\beta_k \\leq u_k. With :math:`\\partial_k L` the derivative of :math:`L` in the :math:`k^{th}` parameter direction, theory dictates that, at the minimum, exactly one of two conditions holds: (i) :math:`|\\partial_k L| = \\alpha_k` and :math:`\\beta_k \\neq 0` (ii) :math:`|\\partial_k L| \\leq \\alpha_k` and :math:`\\beta_k = 0` """ _validate_l1_method(method) # Set attributes based on method cov_params_func = self.cov_params_func_l1 ### Bundle up extra kwargs for the dictionary kwargs. These are ### passed through super(...).fit() as kwargs and unpacked at ### appropriate times alpha = np.array(alpha) assert alpha.min() >= 0 try: kwargs['alpha'] = alpha except TypeError: kwargs = dict(alpha=alpha) kwargs['alpha_rescaled'] = kwargs['alpha'] / float(self.endog.shape[0]) kwargs['trim_mode'] = trim_mode kwargs['size_trim_tol'] = size_trim_tol kwargs['auto_trim_tol'] = auto_trim_tol kwargs['qc_tol'] = qc_tol kwargs['qc_verbose'] = qc_verbose ### Define default keyword arguments to be passed to super(...).fit() if maxiter == 'defined_by_method': if method == 'l1': maxiter = 1000 elif method == 'l1_cvxopt_cp': maxiter = 70 ## Parameters to pass to super(...).fit() # For the 'extra' parameters, pass all that are available, # even if we know (at this point) we will only use one. extra_fit_funcs = {'l1': fit_l1_slsqp} if have_cvxopt and method == 'l1_cvxopt_cp': from statsmodels.base.l1_cvxopt import fit_l1_cvxopt_cp extra_fit_funcs['l1_cvxopt_cp'] = fit_l1_cvxopt_cp elif method.lower() == 'l1_cvxopt_cp': raise ValueError("Cannot use l1_cvxopt_cp as cvxopt " "was not found (install it, or use method='l1' instead)") if callback is None: callback = self._check_perfect_pred else: pass # make a function factory to have multiple call-backs mlefit = super(DiscreteModel, self).fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, extra_fit_funcs=extra_fit_funcs, cov_params_func=cov_params_func, **kwargs) return mlefit # up to subclasses to wrap results def cov_params_func_l1(self, likelihood_model, xopt, retvals): """ Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. Returns a full cov_params matrix, with entries corresponding to zero'd values set to np.nan. """ H = likelihood_model.hessian(xopt) trimmed = retvals['trimmed'] nz_idx = np.nonzero(~trimmed)[0] nnz_params = (~trimmed).sum() if nnz_params > 0: H_restricted = H[nz_idx[:, None], nz_idx] # Covariance estimate for the nonzero params H_restricted_inv = np.linalg.inv(-H_restricted) else: H_restricted_inv = np.zeros(0) cov_params = np.nan * np.ones(H.shape) cov_params[nz_idx[:, None], nz_idx] = H_restricted_inv return cov_params def predict(self, params, exog=None, linear=False): """ Predict response variable of a model given exogenous variables. """ raise NotImplementedError def _derivative_exog(self, params, exog=None, dummy_idx=None, count_idx=None): """ This should implement the derivative of the non-linear function """ raise NotImplementedError def _derivative_exog_helper(self, margeff, params, exog, dummy_idx, count_idx, transform): """ Helper for _derivative_exog to wrap results appropriately """ from .discrete_margins import _get_count_effects, _get_dummy_effects if count_idx is not None: margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff
[docs]class BinaryModel(DiscreteModel): def __init__(self, endog, exog, **kwargs): super(BinaryModel, self).__init__(endog, exog, **kwargs) if (not issubclass(self.__class__, MultinomialModel) and not np.all((self.endog >= 0) & (self.endog <= 1))): raise ValueError("endog must be in the unit interval.")
[docs] def predict(self, params, exog=None, linear=False): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like Fitted parameters of the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. linear : bool, optional If True, returns the linear predictor dot(exog,params). Else, returns the value of the cdf at the linear predictor. Returns ------- array Fitted values at exog. """ if exog is None: exog = self.exog if not linear: return self.cdf(np.dot(exog, params)) else: return np.dot(exog, params)
[docs] @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) bnryfit = super(BinaryModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1BinaryResults(self, bnryfit) return L1BinaryResultsWrapper(discretefit)
def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog dF = self.pdf(np.dot(exog, params))[:,None] * exog if 'ey' in transform: dF /= self.predict(params, exog)[:,None] return dF def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # Note: this form should be appropriate for # group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog margeff = np.dot(self.pdf(np.dot(exog, params))[:, None], params[None, :]) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] return self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform)
[docs]class MultinomialModel(BinaryModel): def _handle_data(self, endog, exog, missing, hasconst, **kwargs): if data_tools._is_using_ndarray_type(endog, None): endog_dummies, ynames = _numpy_to_dummies(endog) yname = 'y' elif data_tools._is_using_pandas(endog, None): endog_dummies, ynames, yname = _pandas_to_dummies(endog) else: endog = np.asarray(endog) endog_dummies, ynames = _numpy_to_dummies(endog) yname = 'y' if not isinstance(ynames, dict): ynames = dict(zip(range(endog_dummies.shape[1]), ynames)) self._ynames_map = ynames data = handle_data(endog_dummies, exog, missing, hasconst, **kwargs) data.ynames = yname # overwrite this to single endog name data.orig_endog = endog self.wendog = data.endog # repeating from upstream... for key in kwargs: if key in ['design_info', 'formula']: # leave attached to data continue try: setattr(self, key, data.__dict__.pop(key)) except KeyError: pass return data
[docs] def initialize(self): """ Preprocesses the data for MNLogit. """ super(MultinomialModel, self).initialize() # This is also a "whiten" method in other models (eg regression) self.endog = self.endog.argmax(1) # turn it into an array of col idx self.J = self.wendog.shape[1] self.K = self.exog.shape[1] self.df_model *= (self.J-1) # for each J - 1 equation. self.df_resid = self.exog.shape[0] - self.df_model - (self.J-1)
[docs] def predict(self, params, exog=None, linear=False): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. linear : bool, optional If True, returns the linear predictor dot(exog,params). Else, returns the value of the cdf at the linear predictor. Notes ----- Column 0 is the base case, the rest conform to the rows of params shifted up one for the base case. """ if exog is None: # do here to accommodate user-given exog exog = self.exog if exog.ndim == 1: exog = exog[None] pred = super(MultinomialModel, self).predict(params, exog, linear) if linear: pred = np.column_stack((np.zeros(len(exog)), pred)) return pred
[docs] @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): if start_params is None: start_params = np.zeros((self.K * (self.J-1))) else: start_params = np.asarray(start_params) callback = lambda x : None # placeholder until check_perfect_pred # skip calling super to handle results from LikelihoodModel mnfit = base.LikelihoodModel.fit(self, start_params = start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) mnfit.params = mnfit.params.reshape(self.K, -1, order='F') mnfit = MultinomialResults(self, mnfit) return MultinomialResultsWrapper(mnfit)
[docs] @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): if start_params is None: start_params = np.zeros((self.K * (self.J-1))) else: start_params = np.asarray(start_params) mnfit = DiscreteModel.fit_regularized( self, start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) mnfit.params = mnfit.params.reshape(self.K, -1, order='F') mnfit = L1MultinomialResults(self, mnfit) return L1MultinomialResultsWrapper(mnfit)
def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predicted probabilities for each choice. dFdparams is of shape nobs x (J*K) x (J-1)*K. The zero derivatives for the base category are not included. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog if params.ndim == 1: # will get flatted from approx_fprime params = params.reshape(self.K, self.J-1, order='F') eXB = np.exp(np.dot(exog, params)) sum_eXB = (1 + eXB.sum(1))[:,None] J = int(self.J) K = int(self.K) repeat_eXB = np.repeat(eXB, J, axis=1) X = np.tile(exog, J-1) # this is the derivative wrt the base level F0 = -repeat_eXB * X / sum_eXB ** 2 # this is the derivative wrt the other levels when # dF_j / dParams_j (ie., own equation) #NOTE: this computes too much, any easy way to cut down? F1 = eXB.T[:,:,None]*X * (sum_eXB - repeat_eXB) / (sum_eXB**2) F1 = F1.transpose((1,0,2)) # put the nobs index first # other equation index other_idx = ~np.kron(np.eye(J-1), np.ones(K)).astype(bool) F1[:, other_idx] = (-eXB.T[:,:,None]*X*repeat_eXB / \ (sum_eXB**2)).transpose((1,0,2))[:, other_idx] dFdX = np.concatenate((F0[:, None,:], F1), axis=1) if 'ey' in transform: dFdX /= self.predict(params, exog)[:, :, None] return dFdX def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. For Multinomial models the marginal effects are P[j] * (params[j] - sum_k P[k]*params[k]) It is returned unshaped, so that each row contains each of the J equations. This makes it easier to take derivatives of this for standard errors. If you want average marginal effects you can do margeff.reshape(nobs, K, J, order='F).mean(0) and the marginal effects for choice J are in column J """ J = int(self.J) # number of alternative choices K = int(self.K) # number of variables # Note: this form should be appropriate for # group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog if params.ndim == 1: # will get flatted from approx_fprime params = params.reshape(K, J-1, order='F') zeroparams = np.c_[np.zeros(K), params] # add base in cdf = self.cdf(np.dot(exog, params)) # TODO: meaningful interpretation for `iterm`? iterm = np.array([cdf[:, [i]] * zeroparams[:, i] for i in range(int(J))]).sum(0) margeff = np.array([cdf[:, [j]] * (zeroparams[:, j] - iterm) for j in range(J)]) # swap the axes to make sure margeff are in order nobs, K, J margeff = np.transpose(margeff, (1, 2, 0)) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:,None,:] margeff = self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform) return margeff.reshape(len(exog), -1, order='F')
[docs]class CountModel(DiscreteModel): def __init__(self, endog, exog, offset=None, exposure=None, missing='none', **kwargs): super(CountModel, self).__init__(endog, exog, missing=missing, offset=offset, exposure=exposure, **kwargs) if exposure is not None: self.exposure = np.log(self.exposure) self._check_inputs(self.offset, self.exposure, self.endog) if offset is None: delattr(self, 'offset') if exposure is None: delattr(self, 'exposure') # promote dtype to float64 if needed dt = np.promote_types(self.endog.dtype, np.float64) self.endog = np.asarray(self.endog, dt) dt = np.promote_types(self.exog.dtype, np.float64) self.exog = np.asarray(self.exog, dt) def _check_inputs(self, offset, exposure, endog): if offset is not None and offset.shape[0] != endog.shape[0]: raise ValueError("offset is not the same length as endog") if exposure is not None and exposure.shape[0] != endog.shape[0]: raise ValueError("exposure is not the same length as endog") def _get_init_kwds(self): # this is a temporary fixup because exposure has been transformed # see #1609 kwds = super(CountModel, self)._get_init_kwds() if 'exposure' in kwds and kwds['exposure'] is not None: kwds['exposure'] = np.exp(kwds['exposure']) return kwds def predict(self, params, exog=None, exposure=None, offset=None, linear=False): """ Predict response variable of a count model given exogenous variables Parameters ---------- params : array_like Model parameters exog : array_like, optional Design / exogenous data. Is exog is None, model exog is used. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. If exposure is not provided and exog is None, uses the model's exposure if present. If not, uses 0 as the default value. offset : array_like, optional Offset is added to the linear prediction with coefficient equal to 1. If offset is not provided and exog is None, uses the model's offset if present. If not, uses 0 as the default value. linear : bool If True, returns the linear predicted values. If False, returns the exponential of the linear predicted value. Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first. """ # the following is copied from GLM predict (without family/link check) # Use fit offset if appropriate if offset is None and exog is None and hasattr(self, 'offset'): offset = self.offset elif offset is None: offset = 0. # Use fit exposure if appropriate if exposure is None and exog is None and hasattr(self, 'exposure'): # Already logged exposure = self.exposure elif exposure is None: exposure = 0. else: exposure = np.log(exposure) if exog is None: exog = self.exog fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if not linear: return np.exp(linpred) # not cdf else: return linpred def _derivative_predict(self, params, exog=None, transform='dydx'): """ For computing marginal effects standard errors. This is used only in the case of discrete and count regressors to get the variance-covariance of the marginal effects. It returns [d F / d params] where F is the predict. Transform can be 'dydx' or 'eydx'. Checking is done in margeff computations for appropriate transform. """ if exog is None: exog = self.exog #NOTE: this handles offset and exposure dF = self.predict(params, exog)[:,None] * exog if 'ey' in transform: dF /= self.predict(params, exog)[:,None] return dF def _derivative_exog(self, params, exog=None, transform="dydx", dummy_idx=None, count_idx=None): """ For computing marginal effects. These are the marginal effects d F(XB) / dX For the Poisson model F(XB) is the predicted counts rather than the probabilities. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # group 3 poisson, nbreg, zip, zinb if exog is None: exog = self.exog k_extra = getattr(self, 'k_extra', 0) params_exog = params if k_extra == 0 else params[:-k_extra] margeff = self.predict(params, exog)[:,None] * params_exog[None,:] if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:,None] return self._derivative_exog_helper(margeff, params, exog, dummy_idx, count_idx, transform) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): cntfit = super(CountModel, self).fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = CountResults(self, cntfit) return CountResultsWrapper(discretefit) @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1CountResults(self, cntfit) return L1CountResultsWrapper(discretefit)
class OrderedModel(DiscreteModel): pass # Public Model Classes
[docs]class Poisson(CountModel): __doc__ = """ Poisson Model %(params)s %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. """ % {'params' : base._model_params_doc, 'extra_params' : """offset : array_like Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like Log(exposure) is added to the linear prediction with coefficient equal to 1. """ + base._missing_param_doc} @property def family(self): from statsmodels.genmod import families return families.Poisson()
[docs] def cdf(self, X): """ Poisson model cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- The value of the Poisson CDF at each point. Notes ----- The CDF is defined as .. math:: \\exp\\left(-\\lambda\\right)\\sum_{i=0}^{y}\\frac{\\lambda^{i}}{i!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=X\\beta The parameter `X` is :math:`X\\beta` in the above formula. """ y = self.endog return stats.poisson.cdf(y, np.exp(X))
def pdf(self, X): """ Poisson model probability mass function Parameters ---------- X : array_like `X` is the linear predictor of the model. See notes. Returns ------- pdf : ndarray The value of the Poisson probability mass function, PMF, for each point of X. Notes -------- The PMF is defined as .. math:: \\frac{e^{-\\lambda_{i}}\\lambda_{i}^{y_{i}}}{y_{i}!} where :math:`\\lambda` assumes the loglinear model. I.e., .. math:: \\ln\\lambda_{i}=x_{i}\\beta The parameter `X` is :math:`x_{i}\\beta` in the above formula. """ y = self.endog return np.exp(stats.poisson.logpmf(y, np.exp(X))) def loglike(self, params): """ Loglikelihood of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -------- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) XB = np.dot(self.exog, params) + offset + exposure endog = self.endog return np.sum(-np.exp(XB) + endog*XB - gammaln(endog+1)) def loglikeobs(self, params): """ Loglikelihood for observations of Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes -------- .. math:: \\ln L_{i}=\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] for observations :math:`i=1,...,n` """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) XB = np.dot(self.exog, params) + offset + exposure endog = self.endog #np.sum(stats.poisson.logpmf(endog, np.exp(XB))) return -np.exp(XB) + endog*XB - gammaln(endog+1) @Appender(_get_start_params_null_docs) def _get_start_params_null(self): offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) const = (self.endog / np.exp(offset + exposure)).mean() params = [np.log(const)] return params
[docs] @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): if start_params is None and self.data.const_idx is not None: # k_params or k_exog not available? start_params = 0.001 * np.ones(self.exog.shape[1]) start_params[self.data.const_idx] = self._get_start_params_null()[0] cntfit = super(CountModel, self).fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) if 'cov_type' in kwargs: cov_kwds = kwargs.get('cov_kwds', {}) kwds = {'cov_type':kwargs['cov_type'], 'cov_kwds':cov_kwds} else: kwds = {} discretefit = PoissonResults(self, cntfit, **kwds) return PoissonResultsWrapper(discretefit)
@Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1PoissonResults(self, cntfit) return L1PoissonResultsWrapper(discretefit)
[docs] def fit_constrained(self, constraints, start_params=None, **fit_kwds): """fit the model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- constraints : formula expression or tuple If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- results : Results instance """ #constraints = (R, q) # TODO: temporary trailing underscore to not overwrite the monkey # patched version # TODO: decide whether to move the imports from patsy import DesignInfo from statsmodels.base._constraints import fit_constrained # same pattern as in base.LikelihoodModel.t_test lc = DesignInfo(self.exog_names).linear_constraint(constraints) R, q = lc.coefs, lc.constants # TODO: add start_params option, need access to tranformation # fit_constrained needs to do the transformation params, cov, res_constr = fit_constrained(self, R, q, start_params=start_params, fit_kwds=fit_kwds) #create dummy results Instance, TODO: wire up properly res = self.fit(maxiter=0, method='nm', disp=0, warn_convergence=False) # we get a wrapper back res.mle_retvals['fcall'] = res_constr.mle_retvals.get('fcall', np.nan) res.mle_retvals['iterations'] = res_constr.mle_retvals.get( 'iterations', np.nan) res.mle_retvals['converged'] = res_constr.mle_retvals['converged'] res._results.params = params res._results.cov_params_default = cov cov_type = fit_kwds.get('cov_type', 'nonrobust') if cov_type != 'nonrobust': res._results.normalized_cov_params = cov # assume scale=1 else: res._results.normalized_cov_params = None k_constr = len(q) res._results.df_resid += k_constr res._results.df_model -= k_constr res._results.constraints = lc res._results.k_constr = k_constr res._results.results_constrained = res_constr return res
def score(self, params): """ Poisson model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\lambda_{i}\\right)x_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return np.dot(self.endog - L, X) def score_obs(self, params): """ Poisson model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score vector (nobs, k_vars) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return (self.endog - L)[:,None] * X def score_factor(self, params): """ Poisson model score_factor for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- score : array_like The score factor (nobs, ) of the model evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\lambda_{i}\\right) for observations :math:`i=1,...,n` where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + offset + exposure) return (self.endog - L) def hessian(self, params): """ Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i}x_{i}x_{i}^{\\prime} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + exposure + offset) return -np.dot(L*X.T, X) def hessian_factor(self, params): """ Poisson model Hessian factor Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (nobs,) The Hessian factor, second derivative of loglikelihood function with respect to the linear predictor evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i=1}^{n}\\lambda_{i} where the loglinear model is assumed .. math:: \\ln\\lambda_{i}=x_{i}\\beta """ offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) X = self.exog L = np.exp(np.dot(X,params) + exposure + offset) return L
[docs]class GeneralizedPoisson(CountModel): __doc__ = """ Generalized Poisson Model %(params)s %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. """ % {'params' : base._model_params_doc, 'extra_params' : """ p : scalar P denotes parameterizations for GP regression. p=1 for GP-1 and p=2 for GP-2. Default is p=1. offset : array_like Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like Log(exposure) is added to the linear prediction with coefficient equal to 1. """ + base._missing_param_doc} def __init__(self, endog, exog, p = 1, offset=None, exposure=None, missing='none', **kwargs): super(GeneralizedPoisson, self).__init__(endog, exog, offset=offset, exposure=exposure, missing=missing, **kwargs) self.parameterization = p - 1 self.exog_names.append('alpha') self.k_extra = 1 self._transparams = False def _get_init_kwds(self): kwds = super(GeneralizedPoisson, self)._get_init_kwds() kwds['p'] = self.parameterization + 1 return kwds def loglike(self, params): """ Loglikelihood of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes -------- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] """ return np.sum(self.loglikeobs(params)) def loglikeobs(self, params): """ Loglikelihood for observations of Generalized Poisson model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes -------- .. math:: \\ln L=\\sum_{i=1}^{n}\\left[\\mu_{i}+(y_{i}-1)*ln(\\mu_{i}+ \\alpha*\\mu_{i}^{p-1}*y_{i})-y_{i}*ln(1+\\alpha*\\mu_{i}^{p-1})- ln(y_{i}!)-\\frac{\\mu_{i}+\\alpha*\\mu_{i}^{p-1}*y_{i}}{1+\\alpha* \\mu_{i}^{p-1}}\\right] for observations :math:`i=1,...,n` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization endog = self.endog mu = self.predict(params) mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + (a1 - 1) * endog return (np.log(mu) + (endog - 1) * np.log(a2) - endog * np.log(a1) - gammaln(endog + 1) - a2 / a1) @Appender(_get_start_params_null_docs) def _get_start_params_null(self): offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) const = (self.endog / np.exp(offset + exposure)).mean() params = [np.log(const)] mu = const * np.exp(offset + exposure) resid = self.endog - mu a = self._estimate_dispersion(mu, resid, df_resid=resid.shape[0] - 1) params.append(a) return np.array(params) def _estimate_dispersion(self, mu, resid, df_resid=None): q = self.parameterization if df_resid is None: df_resid = resid.shape[0] a = ((np.abs(resid) / np.sqrt(mu) - 1) * mu**(-q)).sum() / df_resid return a @Appender( """ use_transparams : bool This parameter enable internal transformation to impose non-negativity. True to enable. Default is False. use_transparams=True imposes the no underdispersion (alpha > 0) constraint. In case use_transparams=True and method="newton" or "ncg" transformation is ignored. """) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='bfgs', maxiter=35, full_output=1, disp=1, callback=None, use_transparams=False, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): if use_transparams and method not in ['newton', 'ncg']: self._transparams = True else: if use_transparams: warnings.warn('Parameter "use_transparams" is ignored', RuntimeWarning) self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None optim_kwds_prelim = {'disp': 0, 'skip_hessian': True, 'warn_convergence': False} optim_kwds_prelim.update(kwargs.get('optim_kwds_prelim', {})) mod_poi = Poisson(self.endog, self.exog, offset=offset) res_poi = mod_poi.fit(**optim_kwds_prelim) start_params = res_poi.params a = self._estimate_dispersion(res_poi.predict(), res_poi.resid, df_resid=res_poi.df_resid) start_params = np.append(start_params, max(-0.1, a)) if callback is None: # work around perfect separation callback #3895 callback = lambda *x: x mlefit = super(GeneralizedPoisson, self).fit(start_params=start_params, maxiter=maxiter, method=method, disp=disp, full_output=full_output, callback=callback, **kwargs) if use_transparams and method not in ["newton", "ncg"]: self._transparams = False mlefit._results.params[-1] = np.exp(mlefit._results.params[-1]) gpfit = GeneralizedPoissonResults(self, mlefit._results) result = GeneralizedPoissonResultsWrapper(gpfit) if cov_kwds is None: cov_kwds = {} result._get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) return result @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) if np.size(alpha) == 1 and alpha != 0: k_params = self.exog.shape[1] + self.k_extra alpha = alpha * np.ones(k_params) alpha[-1] = 0 alpha_p = alpha[:-1] if (self.k_extra and np.size(alpha) > 1) else alpha self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None mod_poi = Poisson(self.endog, self.exog, offset=offset) start_params = mod_poi.fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=0, callback=callback, alpha=alpha_p, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs).params start_params = np.append(start_params, 0.1) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1GeneralizedPoissonResults(self, cntfit) return L1GeneralizedPoissonResultsWrapper(discretefit) def score_obs(self, params): if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y a3 = alpha * p * mu ** (p - 1) a4 = a3 * y dmudb = mu * exog dalpha = (mu_p * (y * ((y - 1) / a2 - 2 / a1) + a2 / a1**2)) dparams = dmudb * (-a4 / a1 + a3 * a2 / (a1 ** 2) + (1 + a4) * ((y - 1) / a2 - 1 / a1) + 1 / mu) return np.concatenate((dparams, np.atleast_2d(dalpha)), axis=1) def score(self, params): score = np.sum(self.score_obs(params), axis=0) if self._transparams: score[-1] == score[-1] ** 2 return score else: return score def _score_p(self, params): """ Generalized Poisson model derivative of the log-likelihood by p-parameter Parameters ---------- params : array_like The parameters of the model Returns ------- dldp : float dldp is first derivative of the loglikelihood function, evaluated at `p-parameter`. """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y dp = np.sum((np.log(mu) * ((a2 - mu) * ((y - 1) / a2 - 2 / a1) + (a1 - 1) * a2 / a1 ** 2))) return dp def hessian(self, params): """ Generalized Poisson model Hessian matrix of the loglikelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] mu_p = np.power(mu, p) a1 = 1 + alpha * mu_p a2 = mu + alpha * mu_p * y a3 = alpha * p * mu ** (p - 1) a4 = a3 * y a5 = p * mu ** (p - 1) dmudb = mu * exog # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) for i in range(dim): for j in range(i + 1): hess_arr[i,j] = np.sum(mu * exog[:,i,None] * exog[:,j,None] * (mu * (a3 * a4 / a1**2 - 2 * a3**2 * a2 / a1**3 + 2 * a3 * (a4 + 1) / a1**2 - a4 * p / (mu * a1) + a3 * p * a2 / (mu * a1**2) + (y - 1) * a4 * (p - 1) / (a2 * mu) - (y - 1) * (1 + a4)**2 / a2**2 - a4 * (p - 1) / (a1 * mu)) + ((y - 1) * (1 + a4) / a2 - (1 + a4) / a1)), axis=0) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha dldpda = np.sum((2 * a4 * mu_p / a1**2 - 2 * a3 * mu_p * a2 / a1**3 - mu_p * y * (y - 1) * (1 + a4) / a2**2 + mu_p * (1 + a4) / a1**2 + a5 * y * (y - 1) / a2 - 2 * a5 * y / a1 + a5 * a2 / a1**2) * dmudb, axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda # for dl/dalpha dalpha dldada = mu_p**2 * (3 * y / a1**2 - (y / a2)**2. * (y - 1) - 2 * a2 / a1**3) hess_arr[-1,-1] = dldada.sum() return hess_arr def predict(self, params, exog=None, exposure=None, offset=None, which='mean'): """ Predict response variable of a count model given exogenous variables. Notes ----- If exposure is specified, then it will be logged by the method. The user does not need to log it first. """ if exog is None: exog = self.exog if exposure is None: exposure = getattr(self, 'exposure', 0) elif exposure != 0: exposure = np.log(exposure) if offset is None: offset = getattr(self, 'offset', 0) fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if which == 'mean': return np.exp(linpred) elif which == 'linear': return linpred elif which =='prob': counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1)) mu = self.predict(params, exog=exog, exposure=exposure, offset=offset)[:,None] return genpoisson_p.pmf(counts, mu, params[-1], self.parameterization + 1) else: raise ValueError('keyword \'which\' not recognized')
[docs]class Logit(BinaryModel): __doc__ = """ Logit Model %(params)s %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc} def cdf(self, X): """ The logistic cumulative distribution function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- 1/(1 + exp(-X)) Notes ----- In the logit model, .. math:: \\Lambda\\left(x^{\\prime}\\beta\\right)= \\text{Prob}\\left(Y=1|x\\right)= \\frac{e^{x^{\\prime}\\beta}}{1+e^{x^{\\prime}\\beta}} """ X = np.asarray(X) return 1/(1+np.exp(-X)) def pdf(self, X): """ The logistic probability density function Parameters ---------- X : array_like `X` is the linear predictor of the logit model. See notes. Returns ------- pdf : ndarray The value of the Logit probability mass function, PMF, for each point of X. ``np.exp(-x)/(1+np.exp(-X))**2`` Notes ----- In the logit model, .. math:: \\lambda\\left(x^{\\prime}\\beta\\right)=\\frac{e^{-x^{\\prime}\\beta}}{\\left(1+e^{-x^{\\prime}\\beta}\\right)^{2}} """ X = np.asarray(X) return np.exp(-X)/(1+np.exp(-X))**2 def loglike(self, params): """ Log-likelihood of logit model. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.sum(np.log(self.cdf(q*np.dot(X,params)))) def loglikeobs(self, params): """ Log-likelihood of logit model for each observation. Parameters ---------- params : array_like The parameters of the logit model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Lambda \\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the logistic distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.log(self.cdf(q*np.dot(X,params))) def score(self, params): """ Logit model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left(y_{i}-\\Lambda_{i}\\right)x_{i} """ y = self.endog X = self.exog L = self.cdf(np.dot(X,params)) return np.dot(y - L,X) def score_obs(self, params): """ Logit model Jacobian of the log-likelihood for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left(y_{i}-\\Lambda_{i}\\right)x_{i} for observations :math:`i=1,...,n` """ y = self.endog X = self.exog L = self.cdf(np.dot(X, params)) return (y - L)[:,None] * X def hessian(self, params): """ Logit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\sum_{i}\\Lambda_{i}\\left(1-\\Lambda_{i}\\right)x_{i}x_{i}^{\\prime} """ X = self.exog L = self.cdf(np.dot(X,params)) return -np.dot(L*(1-L)*X.T,X) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): bnryfit = super(Logit, self).fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = LogitResults(self, bnryfit) return BinaryResultsWrapper(discretefit)
[docs]class Probit(BinaryModel): __doc__ = """ Probit Model %(params)s %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc} def cdf(self, X): """ Probit (Normal) cumulative distribution function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- This function is just an alias for scipy.stats.norm.cdf """ return stats.norm._cdf(X) def pdf(self, X): """ Probit (Normal) probability density function Parameters ---------- X : array_like The linear predictor of the model (XB). Returns ------- pdf : ndarray The value of the normal density function for each point of X. Notes ----- This function is just an alias for scipy.stats.norm.pdf """ X = np.asarray(X) return stats.norm._pdf(X) def loglike(self, params): """ Log-likelihood of probit model (i.e., the normal distribution). Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i}\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.sum(np.log(np.clip(self.cdf(q*np.dot(X,params)), FLOAT_EPS, 1))) def loglikeobs(self, params): """ Log-likelihood of probit model for each observation Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\ln\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right) for observations :math:`i=1,...,n` where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ q = 2*self.endog - 1 X = self.exog return np.log(np.clip(self.cdf(q*np.dot(X,params)), FLOAT_EPS, 1)) def score(self, params): """ Probit model score (gradient) vector Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta}=\\sum_{i=1}^{n}\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog X = self.exog XB = np.dot(X,params) q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return np.dot(L,X) def score_obs(self, params): """ Probit model Jacobian for each observation Parameters ---------- params : array_like The parameters of the model Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta}=\\left[\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}\\right]x_{i} for observations :math:`i=1,...,n` Where :math:`q=2y-1`. This simplification comes from the fact that the normal distribution is symmetric. """ y = self.endog X = self.exog XB = np.dot(X,params) q = 2*y - 1 # clip to get rid of invalid divide complaint L = q*self.pdf(q*XB)/np.clip(self.cdf(q*XB), FLOAT_EPS, 1 - FLOAT_EPS) return L[:,None] * X def hessian(self, params): """ Probit model Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (k_vars, k_vars) The Hessian, second derivative of loglikelihood function, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta\\partial\\beta^{\\prime}}=-\\lambda_{i}\\left(\\lambda_{i}+x_{i}^{\\prime}\\beta\\right)x_{i}x_{i}^{\\prime} where .. math:: \\lambda_{i}=\\frac{q_{i}\\phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)}{\\Phi\\left(q_{i}x_{i}^{\\prime}\\beta\\right)} and :math:`q=2y-1` """ X = self.exog XB = np.dot(X,params) q = 2*self.endog - 1 L = q*self.pdf(q*XB)/self.cdf(q*XB) return np.dot(-L*(L+XB)*X.T,X) @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callback=None, **kwargs): bnryfit = super(Probit, self).fit(start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, **kwargs) discretefit = ProbitResults(self, bnryfit) return BinaryResultsWrapper(discretefit)
[docs]class MNLogit(MultinomialModel): __doc__ = """ Multinomial Logit Model Parameters ---------- endog : array_like `endog` is an 1-d vector of the endogenous response. `endog` can contain strings, ints, or floats or may be a pandas Categorical Series. Note that if it contains strings, every distinct string will be a category. No stripping of whitespace is done. exog : array_like A nobs x k array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See `statsmodels.tools.add_constant`. %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. J : float The number of choices for the endogenous variable. Note that this is zero-indexed. K : float The actual number of parameters for the exogenous design. Includes the constant if the design has one. names : dict A dictionary mapping the column number in `wendog` to the variables in `endog`. wendog : array An n x j array where j is the number of unique categories in `endog`. Each column of j is a dummy variable indicating the category of each observation. See `names` for a dictionary mapping each column to its category. Notes ----- See developer notes for further information on `MNLogit` internals. """ % {'extra_params': base._missing_param_doc} def __init__(self, endog, exog, **kwargs): super(MNLogit, self).__init__(endog, exog, **kwargs) # Override cov_names since multivariate model yname = self.endog_names ynames = self._ynames_map ynames = MultinomialResults._maybe_convert_ynames_int(ynames) # use range below to ensure sortedness ynames = [ynames[key] for key in range(int(self.J))] idx = MultiIndex.from_product((ynames[1:], self.data.xnames), names=(yname, None)) self.data.cov_names = idx
[docs] def pdf(self, eXB): """ NotImplemented """ raise NotImplementedError
[docs] def cdf(self, X): """ Multinomial logit cumulative distribution function. Parameters ---------- X : array The linear predictor of the model XB. Returns ------- cdf : ndarray The cdf evaluated at `X`. Notes ----- In the multinomial logit model. .. math:: \\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)} """ eXB = np.column_stack((np.ones(len(X)), np.exp(X))) return eXB/eXB.sum(1)[:,None]
[docs] def loglike(self, params): """ Log-likelihood of the multinomial logit model. Parameters ---------- params : array_like The parameters of the multinomial logit model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. Notes ----- .. math:: \\ln L=\\sum_{i=1}^{n}\\sum_{j=0}^{J}d_{ij}\\ln \\left(\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)} {\\sum_{k=0}^{J} \\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right) where :math:`d_{ij}=1` if individual `i` chose alternative `j` and 0 if not. """ params = params.reshape(self.K, -1, order='F') d = self.wendog logprob = np.log(self.cdf(np.dot(self.exog,params))) return np.sum(d * logprob)
[docs] def loglikeobs(self, params): """ Log-likelihood of the multinomial logit model for each observation. Parameters ---------- params : array_like The parameters of the multinomial logit model. Returns ------- loglike : array_like The log likelihood for each observation of the model evaluated at `params`. See Notes Notes ----- .. math:: \\ln L_{i}=\\sum_{j=0}^{J}d_{ij}\\ln \\left(\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)} {\\sum_{k=0}^{J} \\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right) for observations :math:`i=1,...,n` where :math:`d_{ij}=1` if individual `i` chose alternative `j` and 0 if not. """ params = params.reshape(self.K, -1, order='F') d = self.wendog logprob = np.log(self.cdf(np.dot(self.exog,params))) return d * logprob
[docs] def score(self, params): """ Score matrix for multinomial logit model log-likelihood Parameters ---------- params : array The parameters of the multinomial logit model. Returns ------- score : ndarray, (K * (J-1),) The 2-d score vector, i.e. the first derivative of the loglikelihood function, of the multinomial logit model evaluated at `params`. Notes ----- .. math:: \\frac{\\partial\\ln L}{\\partial\\beta_{j}}=\\sum_{i}\\left(d_{ij}-\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right)x_{i} for :math:`j=1,...,J` In the multinomial model the score matrix is K x J-1 but is returned as a flattened array to work with the solvers. """ params = params.reshape(self.K, -1, order='F') firstterm = self.wendog[:,1:] - self.cdf(np.dot(self.exog, params))[:,1:] #NOTE: might need to switch terms if params is reshaped return np.dot(firstterm.T, self.exog).flatten()
[docs] def loglike_and_score(self, params): """ Returns log likelihood and score, efficiently reusing calculations. Note that both of these returned quantities will need to be negated before being minimized by the maximum likelihood fitting machinery. """ params = params.reshape(self.K, -1, order='F') cdf_dot_exog_params = self.cdf(np.dot(self.exog, params)) loglike_value = np.sum(self.wendog * np.log(cdf_dot_exog_params)) firstterm = self.wendog[:, 1:] - cdf_dot_exog_params[:, 1:] score_array = np.dot(firstterm.T, self.exog).flatten() return loglike_value, score_array
[docs] def score_obs(self, params): """ Jacobian matrix for multinomial logit model log-likelihood Parameters ---------- params : array The parameters of the multinomial logit model. Returns ------- jac : array_like The derivative of the loglikelihood for each observation evaluated at `params` . Notes ----- .. math:: \\frac{\\partial\\ln L_{i}}{\\partial\\beta_{j}}=\\left(d_{ij}-\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right)x_{i} for :math:`j=1,...,J`, for observations :math:`i=1,...,n` In the multinomial model the score vector is K x (J-1) but is returned as a flattened array. The Jacobian has the observations in rows and the flattened array of derivatives in columns. """ params = params.reshape(self.K, -1, order='F') firstterm = self.wendog[:,1:] - self.cdf(np.dot(self.exog, params))[:,1:] #NOTE: might need to switch terms if params is reshaped return (firstterm[:,:,None] * self.exog[:,None,:]).reshape(self.exog.shape[0], -1)
[docs] def hessian(self, params): """ Multinomial logit Hessian matrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hess : ndarray, (J*K, J*K) The Hessian, second derivative of loglikelihood function with respect to the flattened parameters, evaluated at `params` Notes ----- .. math:: \\frac{\\partial^{2}\\ln L}{\\partial\\beta_{j}\\partial\\beta_{l}}=-\\sum_{i=1}^{n}\\frac{\\exp\\left(\\beta_{j}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\left[\\boldsymbol{1}\\left(j=l\\right)-\\frac{\\exp\\left(\\beta_{l}^{\\prime}x_{i}\\right)}{\\sum_{k=0}^{J}\\exp\\left(\\beta_{k}^{\\prime}x_{i}\\right)}\\right]x_{i}x_{l}^{\\prime} where :math:`\\boldsymbol{1}\\left(j=l\\right)` equals 1 if `j` = `l` and 0 otherwise. The actual Hessian matrix has J**2 * K x K elements. Our Hessian is reshaped to be square (J*K, J*K) so that the solvers can use it. This implementation does not take advantage of the symmetry of the Hessian and could probably be refactored for speed. """ params = params.reshape(self.K, -1, order='F') X = self.exog pr = self.cdf(np.dot(X,params)) partials = [] J = self.J K = self.K for i in range(J-1): for j in range(J-1): # this loop assumes we drop the first col. if i == j: partials.append(\ -np.dot(((pr[:,i+1]*(1-pr[:,j+1]))[:,None]*X).T,X)) else: partials.append(-np.dot(((pr[:,i+1]*-pr[:,j+1])[:,None]*X).T,X)) H = np.array(partials) # the developer's notes on multinomial should clear this math up H = np.transpose(H.reshape(J-1, J-1, K, K), (0, 2, 1, 3)).reshape((J-1)*K, (J-1)*K) return H
#TODO: Weibull can replaced by a survival analsysis function # like stat's streg (The cox model as well) #class Weibull(DiscreteModel): # """ # Binary choice Weibull model # # Notes # ------ # This is unfinished and untested. # """ ##TODO: add analytic hessian for Weibull # def initialize(self): # pass # # def cdf(self, X): # """ # Gumbell (Log Weibull) cumulative distribution function # """ ## return np.exp(-np.exp(-X)) # return stats.gumbel_r.cdf(X) # # these two are equivalent. # # Greene table and discussion is incorrect. # # def pdf(self, X): # """ # Gumbell (LogWeibull) probability distribution function # """ # return stats.gumbel_r.pdf(X) # # def loglike(self, params): # """ # Loglikelihood of Weibull distribution # """ # X = self.exog # cdf = self.cdf(np.dot(X,params)) # y = self.endog # return np.sum(y*np.log(cdf) + (1-y)*np.log(1-cdf)) # # def score(self, params): # y = self.endog # X = self.exog # F = self.cdf(np.dot(X,params)) # f = self.pdf(np.dot(X,params)) # term = (y*f/F + (1 - y)*-f/(1-F)) # return np.dot(term,X) # # def hessian(self, params): # hess = nd.Jacobian(self.score) # return hess(params) # # def fit(self, start_params=None, method='newton', maxiter=35, tol=1e-08): ## The example had problems with all zero start values, Hessian = 0 # if start_params is None: # start_params = OLS(self.endog, self.exog).fit().params # mlefit = super(Weibull, self).fit(start_params=start_params, # method=method, maxiter=maxiter, tol=tol) # return mlefit #
[docs]class NegativeBinomial(CountModel): __doc__ = """ Negative Binomial Model %(params)s %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. References ---------- Greene, W. 2008. "Functional forms for the negative binomial model for count data". Economics Letters. Volume 99, Number 3, pp.585-590. Hilbe, J.M. 2011. "Negative binomial regression". Cambridge University Press. """ % {'params': base._model_params_doc, 'extra_params': """loglike_method : str Log-likelihood type. 'nb2','nb1', or 'geometric'. Fitted value :math:`\\mu` Heterogeneity parameter :math:`\\alpha` - nb2: Variance equal to :math:`\\mu + \\alpha\\mu^2` (most common) - nb1: Variance equal to :math:`\\mu + \\alpha\\mu` - geometric: Variance equal to :math:`\\mu + \\mu^2` offset : array_like Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like Log(exposure) is added to the linear prediction with coefficient equal to 1. """ + base._missing_param_doc} def __init__(self, endog, exog, loglike_method='nb2', offset=None, exposure=None, missing='none', **kwargs): super(NegativeBinomial, self).__init__(endog, exog, offset=offset, exposure=exposure, missing=missing, **kwargs) self.loglike_method = loglike_method self._initialize() if loglike_method in ['nb2', 'nb1']: self.exog_names.append('alpha') self.k_extra = 1 else: self.k_extra = 0 # store keys for extras if we need to recreate model instance # we need to append keys that do not go to super self._init_keys.append('loglike_method') def _initialize(self): if self.loglike_method == 'nb2': self.hessian = self._hessian_nb2 self.score = self._score_nbin self.loglikeobs = self._ll_nb2 self._transparams = True # transform lnalpha -> alpha in fit elif self.loglike_method == 'nb1': self.hessian = self._hessian_nb1 self.score = self._score_nb1 self.loglikeobs = self._ll_nb1 self._transparams = True # transform lnalpha -> alpha in fit elif self.loglike_method == 'geometric': self.hessian = self._hessian_geom self.score = self._score_geom self.loglikeobs = self._ll_geometric else: raise ValueError('Likelihood type must "nb1", "nb2" ' 'or "geometric"') # Workaround to pickle instance methods def __getstate__(self): odict = self.__dict__.copy() # copy the dict since we change it del odict['hessian'] del odict['score'] del odict['loglikeobs'] return odict def __setstate__(self, indict): self.__dict__.update(indict) self._initialize() def _ll_nbin(self, params, alpha, Q=0): if np.any(np.iscomplex(params)) or np.iscomplex(alpha): gamma_ln = loggamma else: gamma_ln = gammaln endog = self.endog mu = self.predict(params) size = 1/alpha * mu**Q prob = size/(size+mu) coeff = (gamma_ln(size+endog) - gamma_ln(endog+1) - gamma_ln(size)) llf = coeff + size*np.log(prob) + endog*np.log(1-prob) return llf def _ll_nb2(self, params): if self._transparams: # got lnalpha during fit alpha = np.exp(params[-1]) else: alpha = params[-1] return self._ll_nbin(params[:-1], alpha, Q=0) def _ll_nb1(self, params): if self._transparams: # got lnalpha during fit alpha = np.exp(params[-1]) else: alpha = params[-1] return self._ll_nbin(params[:-1], alpha, Q=1) def _ll_geometric(self, params): # we give alpha of 1 because it's actually log(alpha) where alpha=0 return self._ll_nbin(params, 1, 0)
[docs] def loglike(self, params): r""" Loglikelihood for negative binomial model Parameters ---------- params : array_like The parameters of the model. If `loglike_method` is nb1 or nb2, then the ancillary parameter is expected to be the last element. Returns ------- llf : float The loglikelihood value at `params` Notes ----- Following notation in Greene (2008), with negative binomial heterogeneity parameter :math:`\alpha`: .. math:: \lambda_i &= exp(X\beta) \\ \theta &= 1 / \alpha \\ g_i &= \theta \lambda_i^Q \\ w_i &= g_i/(g_i + \lambda_i) \\ r_i &= \theta / (\theta+\lambda_i) \\ ln \mathcal{L}_i &= ln \Gamma(y_i+g_i) - ln \Gamma(1+y_i) + g_iln (r_i) + y_i ln(1-r_i) where :math`Q=0` for NB2 and geometric and :math:`Q=1` for NB1. For the geometric, :math:`\alpha=0` as well. """ llf = np.sum(self.loglikeobs(params)) return llf
def _score_geom(self, params): exog = self.exog y = self.endog[:, None] mu = self.predict(params)[:, None] dparams = exog * (y-mu)/(mu+1) return dparams.sum(0) def _score_nbin(self, params, Q=0): """ Score vector for NB2 model """ if self._transparams: # lnalpha came in during fit alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] a1 = 1/alpha * mu**Q prob = a1 / (a1 + mu) # a1 aka "size" in _ll_nbin if Q == 1: # nb1 # Q == 1 --> a1 = mu / alpha --> prob = 1 / (alpha + 1) dgpart = digamma(y + a1) - digamma(a1) dparams = exog * a1 * (np.log(prob) + dgpart) dalpha = ((alpha * (y - mu * np.log(prob) - mu*(dgpart + 1)) - mu * (np.log(prob) + dgpart))/ (alpha**2*(alpha + 1))).sum() elif Q == 0: # nb2 dgpart = digamma(y + a1) - digamma(a1) dparams = exog*a1 * (y-mu)/(mu+a1) da1 = -alpha**-2 dalpha = (dgpart + np.log(a1) - np.log(a1+mu) - (y-mu)/(a1+mu)).sum() * da1 #multiply above by constant outside sum to reduce rounding error if self._transparams: return np.r_[dparams.sum(0), dalpha*alpha] else: return np.r_[dparams.sum(0), dalpha] def _score_nb1(self, params): return self._score_nbin(params, Q=1) def _hessian_geom(self, params): exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim, dim)) const_arr = mu*(1+y)/(mu+1)**2 for i in range(dim): for j in range(dim): if j > i: continue hess_arr[i,j] = np.sum(-exog[:,i,None] * exog[:,j,None] * const_arr, axis=0) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] return hess_arr def _hessian_nb1(self, params): """ Hessian of NB1 model. """ if self._transparams: # lnalpha came in during fit alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] a1 = mu/alpha dgpart = digamma(y + a1) - digamma(a1) prob = 1 / (1 + alpha) # equiv: a1 / (a1 + mu) # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) #const_arr = a1*mu*(a1+y)/(mu+a1)**2 # not all of dparams dparams = exog / alpha * (np.log(prob) + dgpart) dmudb = exog*mu xmu_alpha = exog * a1 trigamma = (special.polygamma(1, a1 + y) - special.polygamma(1, a1)) for i in range(dim): for j in range(dim): if j > i: continue hess_arr[i,j] = np.sum(dparams[:,i,None] * dmudb[:,j,None] + xmu_alpha[:,i,None] * xmu_alpha[:,j,None] * trigamma, axis=0) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha da1 = -alpha**-2 dldpda = np.sum(-a1 * dparams + exog * a1 * (-trigamma*mu/alpha**2 - prob), axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda log_alpha = np.log(prob) alpha3 = alpha**3 alpha2 = alpha**2 mu2 = mu**2 dada = ((alpha3*mu*(2*log_alpha + 2*dgpart + 3) - 2*alpha3*y + 4*alpha2*mu*(log_alpha + dgpart) + alpha2 * (2*mu - y) + 2*alpha*mu2*trigamma + mu2 * trigamma + alpha2 * mu2 * trigamma + 2*alpha*mu*(log_alpha + dgpart) )/(alpha**4*(alpha2 + 2*alpha + 1))) hess_arr[-1,-1] = dada.sum() return hess_arr def _hessian_nb2(self, params): """ Hessian of NB2 model. """ if self._transparams: # lnalpha came in during fit alpha = np.exp(params[-1]) else: alpha = params[-1] a1 = 1/alpha params = params[:-1] exog = self.exog y = self.endog[:,None] mu = self.predict(params)[:,None] prob = a1 / (a1 + mu) dgpart = digamma(a1 + y) - digamma(a1) # for dl/dparams dparams dim = exog.shape[1] hess_arr = np.empty((dim+1,dim+1)) const_arr = a1*mu*(a1+y)/(mu+a1)**2 for i in range(dim): for j in range(dim): if j > i: continue hess_arr[i,j] = np.sum(-exog[:,i,None] * exog[:,j,None] * const_arr, axis=0) tri_idx = np.triu_indices(dim, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] # for dl/dparams dalpha da1 = -alpha**-2 dldpda = -np.sum(mu*exog*(y-mu)*a1**2/(mu+a1)**2 , axis=0) hess_arr[-1,:-1] = dldpda hess_arr[:-1,-1] = dldpda # for dl/dalpha dalpha #NOTE: polygamma(1,x) is the trigamma function da2 = 2*alpha**-3 dalpha = da1 * (dgpart + np.log(prob) - (y - mu)/(a1+mu)) dada = (da2 * dalpha/da1 + da1**2 * (special.polygamma(1, a1+y) - special.polygamma(1, a1) + 1/a1 - 1/(a1 + mu) + (y - mu)/(mu + a1)**2)).sum() hess_arr[-1,-1] = dada return hess_arr #TODO: replace this with analytic where is it used?
[docs] def score_obs(self, params): sc = approx_fprime_cs(params, self.loglikeobs) return sc
@Appender(_get_start_params_null_docs) def _get_start_params_null(self): offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) const = (self.endog / np.exp(offset + exposure)).mean() params = [np.log(const)] mu = const * np.exp(offset + exposure) resid = self.endog - mu a = self._estimate_dispersion(mu, resid, df_resid=resid.shape[0] - 1) params.append(a) return np.array(params) def _estimate_dispersion(self, mu, resid, df_resid=None): if df_resid is None: df_resid = resid.shape[0] if self.loglike_method == 'nb2': #params.append(np.linalg.pinv(mu[:,None]).dot(resid**2 / mu - 1)) a = ((resid**2 / mu - 1) / mu).sum() / df_resid else: #self.loglike_method == 'nb1': a = (resid**2 / mu - 1).sum() / df_resid return a
[docs] def fit(self, start_params=None, method='bfgs', maxiter=35, full_output=1, disp=1, callback=None, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): # Note: do not let super handle robust covariance because it has # transformed params self._transparams = False # always define attribute if self.loglike_method.startswith('nb') and method not in ['newton', 'ncg']: self._transparams = True # in case same Model instance is refit elif self.loglike_method.startswith('nb'): # method is newton/ncg self._transparams = False # because we need to step in alpha space if start_params is None: # Use poisson fit as first guess. #TODO, Warning: this assumes exposure is logged offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None optim_kwds_prelim = {'disp': 0, 'skip_hessian': True, 'warn_convergence': False} optim_kwds_prelim.update(kwargs.get('optim_kwds_prelim', {})) mod_poi = Poisson(self.endog, self.exog, offset=offset) res_poi = mod_poi.fit(**optim_kwds_prelim) start_params = res_poi.params if self.loglike_method.startswith('nb'): a = self._estimate_dispersion(res_poi.predict(), res_poi.resid, df_resid=res_poi.df_resid) start_params = np.append(start_params, max(0.05, a)) else: if self._transparams is True: # transform user provided start_params dispersion, see #3918 start_params = np.array(start_params, copy=True) start_params[-1] = np.log(start_params[-1]) if callback is None: # work around perfect separation callback #3895 callback = lambda *x: x mlefit = super(NegativeBinomial, self).fit(start_params=start_params, maxiter=maxiter, method=method, disp=disp, full_output=full_output, callback=callback, **kwargs) # TODO: Fix NBin _check_perfect_pred if self.loglike_method.startswith('nb'): # mlefit is a wrapped counts results self._transparams = False # do not need to transform anymore now # change from lnalpha to alpha if method not in ["newton", "ncg"]: mlefit._results.params[-1] = np.exp(mlefit._results.params[-1]) nbinfit = NegativeBinomialResults(self, mlefit._results) result = NegativeBinomialResultsWrapper(nbinfit) else: result = mlefit if cov_kwds is None: cov_kwds = {} #TODO: make this unnecessary ? result._get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) return result
[docs] def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) if self.loglike_method.startswith('nb') and (np.size(alpha) == 1 and alpha != 0): # do not penalize alpha if alpha is scalar k_params = self.exog.shape[1] + self.k_extra alpha = alpha * np.ones(k_params) alpha[-1] = 0 # alpha for regularized poisson to get starting values alpha_p = alpha[:-1] if (self.k_extra and np.size(alpha) > 1) else alpha self._transparams = False if start_params is None: # Use poisson fit as first guess. #TODO, Warning: this assumes exposure is logged offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None mod_poi = Poisson(self.endog, self.exog, offset=offset) start_params = mod_poi.fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=0, callback=callback, alpha=alpha_p, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs).params if self.loglike_method.startswith('nb'): start_params = np.append(start_params, 0.1) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1NegativeBinomialResults(self, cntfit) return L1NegativeBinomialResultsWrapper(discretefit)
[docs]class NegativeBinomialP(CountModel): __doc__ = """ Generalized Negative Binomial (NB-P) Model %(params)s %(extra_params)s Attributes ---------- endog : array A reference to the endogenous response variable exog : array A reference to the exogenous design. p : scalar P denotes parameterizations for NB-P regression. p=1 for NB-1 and p=2 for NB-2. Default is p=1. """ % {'params' : base._model_params_doc, 'extra_params' : """p : scalar P denotes parameterizations for NB regression. p=1 for NB-1 and p=2 for NB-2. Default is p=2. offset : array_like Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like Log(exposure) is added to the linear prediction with coefficient equal to 1. """ + base._missing_param_doc} def __init__(self, endog, exog, p=2, offset=None, exposure=None, missing='none', **kwargs): super(NegativeBinomialP, self).__init__(endog, exog, offset=offset, exposure=exposure, missing=missing, **kwargs) self.parameterization = p self.exog_names.append('alpha') self.k_extra = 1 self._transparams = False def _get_init_kwds(self): kwds = super(NegativeBinomialP, self)._get_init_kwds() kwds['p'] = self.parameterization return kwds
[docs] def loglike(self, params): """ Loglikelihood of Generalized Negative Binomial (NB-P) model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : float The log-likelihood function of the model evaluated at `params`. See notes. """ return np.sum(self.loglikeobs(params))
[docs] def loglikeobs(self, params): """ Loglikelihood for observations of Generalized Negative Binomial (NB-P) model Parameters ---------- params : array_like The parameters of the model. Returns ------- loglike : ndarray The log likelihood for each observation of the model evaluated at `params`. See Notes """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = self.parameterization y = self.endog mu = self.predict(params) mu_p = mu**(2 - p) a1 = mu_p / alpha a2 = mu + a1 llf = (gammaln(y + a1) - gammaln(y + 1) - gammaln(a1) + a1 * np.log(a1) + y * np.log(mu) - (y + a1) * np.log(a2)) return llf
[docs] def score_obs(self, params): """ Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood for each observations. Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = 2 - self.parameterization y = self.endog mu = self.predict(params) mu_p = mu**p a1 = mu_p / alpha a2 = mu + a1 a3 = y + a1 a4 = p * a1 / mu dgpart = digamma(a3) - digamma(a1) dgterm = dgpart + np.log(a1 / a2) + 1 - a3 / a2 # TODO: better name/interpretation for dgterm? dparams = (a4 * dgterm - a3 / a2 + y / mu) dparams = (self.exog.T * mu * dparams).T dalpha = -a1 / alpha * dgterm return np.concatenate((dparams, np.atleast_2d(dalpha).T), axis=1)
[docs] def score(self, params): """ Generalized Negative Binomial (NB-P) model score (gradient) vector of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- score : ndarray, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at `params` """ score = np.sum(self.score_obs(params), axis=0) if self._transparams: score[-1] == score[-1] ** 2 return score else: return score
[docs] def hessian(self, params): """ Generalized Negative Binomial (NB-P) model hessian maxtrix of the log-likelihood Parameters ---------- params : array_like The parameters of the model Returns ------- hessian : ndarray, 2-D The hessian matrix of the model. """ if self._transparams: alpha = np.exp(params[-1]) else: alpha = params[-1] params = params[:-1] p = 2 - self.parameterization y = self.endog exog = self.exog mu = self.predict(params) mu_p = mu**p a1 = mu_p / alpha a2 = mu + a1 a3 = y + a1 a4 = p * a1 / mu prob = a1 / a2 lprob = np.log(prob) dgpart = digamma(a3) - digamma(a1) pgpart = polygamma(1, a3) - polygamma(1, a1) dim = exog.shape[1] hess_arr = np.zeros((dim + 1, dim + 1)) coeff = mu**2 * (((1 + a4)**2 * a3 / a2**2 - a3 / a2 * (p - 1) * a4 / mu - y / mu**2 - 2 * a4 * (1 + a4) / a2 + p * a4 / mu * (lprob + dgpart + 2) - a4 / mu * (lprob + dgpart + 1) + a4**2 * pgpart) + (-(1 + a4) * a3 / a2 + y / mu + a4 * (lprob + dgpart + 1)) / mu) for i in range(dim): hess_arr[i, :-1] = np.sum(self.exog[:, :].T * self.exog[:, i] * coeff, axis=1) hess_arr[-1,:-1] = (self.exog[:, :].T * mu * a1 * ((1 + a4) * (1 - a3 / a2) / a2 - p * (lprob + dgpart + 2) / mu + p / mu * (a3 + p * a1) / a2 - a4 * pgpart) / alpha).sum(axis=1) da2 = (a1 * (2 * lprob + 2 * dgpart + 3 - 2 * a3 / a2 + a1 * pgpart - 2 * prob + prob * a3 / a2) / alpha**2) hess_arr[-1, -1] = da2.sum() tri_idx = np.triu_indices(dim + 1, k=1) hess_arr[tri_idx] = hess_arr.T[tri_idx] return hess_arr
@Appender(_get_start_params_null_docs) def _get_start_params_null(self): offset = getattr(self, "offset", 0) exposure = getattr(self, "exposure", 0) q = self.parameterization - 1 const = (self.endog / np.exp(offset + exposure)).mean() params = [np.log(const)] mu = const * np.exp(offset + exposure) resid = self.endog - mu a = self._estimate_dispersion(mu, resid, df_resid=resid.shape[0] - 1) params.append(a) return np.array(params) def _estimate_dispersion(self, mu, resid, df_resid=None): q = self.parameterization - 1 if df_resid is None: df_resid = resid.shape[0] a = ((resid**2 / mu - 1) * mu**(-q)).sum() / df_resid return a
[docs] @Appender(DiscreteModel.fit.__doc__) def fit(self, start_params=None, method='bfgs', maxiter=35, full_output=1, disp=1, callback=None, use_transparams=False, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): # TODO: Fix doc string """ use_transparams : bool This parameter enable internal transformation to impose non-negativity. True to enable. Default is False. use_transparams=True imposes the no underdispersion (alpha > 0) constraint. In case use_transparams=True and method="newton" or "ncg" transformation is ignored. """ if use_transparams and method not in ['newton', 'ncg']: self._transparams = True else: if use_transparams: warnings.warn('Parameter "use_transparams" is ignored', RuntimeWarning) self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None optim_kwds_prelim = {'disp': 0, 'skip_hessian': True, 'warn_convergence': False} optim_kwds_prelim.update(kwargs.get('optim_kwds_prelim', {})) mod_poi = Poisson(self.endog, self.exog, offset=offset) res_poi = mod_poi.fit(**optim_kwds_prelim) start_params = res_poi.params a = self._estimate_dispersion(res_poi.predict(), res_poi.resid, df_resid=res_poi.df_resid) start_params = np.append(start_params, max(0.05, a)) if callback is None: # work around perfect separation callback #3895 callback = lambda *x: x mlefit = super(NegativeBinomialP, self).fit(start_params=start_params, maxiter=maxiter, method=method, disp=disp, full_output=full_output, callback=callback, **kwargs) if use_transparams and method not in ["newton", "ncg"]: self._transparams = False mlefit._results.params[-1] = np.exp(mlefit._results.params[-1]) nbinfit = NegativeBinomialResults(self, mlefit._results) result = NegativeBinomialResultsWrapper(nbinfit) if cov_kwds is None: cov_kwds = {} result._get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) return result
[docs] @Appender(DiscreteModel.fit_regularized.__doc__) def fit_regularized(self, start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4, qc_tol=0.03, **kwargs): _validate_l1_method(method) if np.size(alpha) == 1 and alpha != 0: k_params = self.exog.shape[1] + self.k_extra alpha = alpha * np.ones(k_params) alpha[-1] = 0 alpha_p = alpha[:-1] if (self.k_extra and np.size(alpha) > 1) else alpha self._transparams = False if start_params is None: offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0) if np.size(offset) == 1 and offset == 0: offset = None mod_poi = Poisson(self.endog, self.exog, offset=offset) start_params = mod_poi.fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=0, callback=callback, alpha=alpha_p, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs).params start_params = np.append(start_params, 0.1) cntfit = super(CountModel, self).fit_regularized( start_params=start_params, method=method, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol, size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs) discretefit = L1NegativeBinomialResults(self, cntfit) return L1NegativeBinomialResultsWrapper(discretefit)
[docs] def predict(self, params, exog=None, exposure=None, offset=None, which='mean'): """ Predict response variable of a model given exogenous variables. Parameters ---------- params : array_like 2d array of fitted parameters of the model. Should be in the order returned from the model. exog : array_like, optional 1d or 2d array of exogenous values. If not supplied, the whole exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1. linear : bool, optional If True, returns the linear predictor dot(exog,params). Else, returns the value of the cdf at the linear predictor. offset : array_like, optional Offset is added to the linear prediction with coefficient equal to 1. exposure : array_like, optional Log(exposure) is added to the linear prediction with coefficient equal to 1. which : 'mean', 'linear', 'prob', optional. 'mean' returns the exp of linear predictor exp(dot(exog,params)). 'linear' returns the linear predictor dot(exog,params). 'prob' return probabilities for counts from 0 to max(endog). Default is 'mean'. Notes ----- """ if exog is None: exog = self.exog if exposure is None: exposure = getattr(self, 'exposure', 0) elif exposure != 0: exposure = np.log(exposure) if offset is None: offset = getattr(self, 'offset', 0) fitted = np.dot(exog, params[:exog.shape[1]]) linpred = fitted + exposure + offset if which == 'mean': return np.exp(linpred) elif which == 'linear': return linpred elif which =='prob': counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1)) mu = self.predict(params, exog, exposure, offset) size, prob = self.convert_params(params, mu) return nbinom.pmf(counts, size[:,None], prob[:,None]) else: raise ValueError('keyword "which" = %s not recognized' % which)
[docs] def convert_params(self, params, mu): alpha = params[-1] p = 2 - self.parameterization size = 1. / alpha * mu**p prob = size / (size + mu) return (size, prob)
### Results Class ###
[docs]class DiscreteResults(base.LikelihoodModelResults): __doc__ = _discrete_results_docs % {"one_line_description" : "A results class for the discrete dependent variable models.", "extra_attr" : ""} def __init__(self, model, mlefit, cov_type='nonrobust', cov_kwds=None, use_t=None): #super(DiscreteResults, self).__init__(model, params, # np.linalg.inv(-hessian), scale=1.) self.model = model self.df_model = model.df_model self.df_resid = model.df_resid self._cache = {} self.nobs = model.exog.shape[0] self.__dict__.update(mlefit.__dict__) if not hasattr(self, 'cov_type'): # do this only if super, i.e. mlefit did not already add cov_type # robust covariance if use_t is not None: self.use_t = use_t if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = {'description' : 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} else: if cov_kwds is None: cov_kwds = {} from statsmodels.base.covtype import get_robustcov_results get_robustcov_results(self, cov_type=cov_type, use_self=True, **cov_kwds) def __getstate__(self): # remove unpicklable methods mle_settings = getattr(self, 'mle_settings', None) if mle_settings is not None: if 'callback' in mle_settings: mle_settings['callback'] = None if 'cov_params_func' in mle_settings: mle_settings['cov_params_func'] = None return self.__dict__ @cache_readonly def prsquared(self): """ McFadden's pseudo-R-squared. `1 - (llf / llnull)` """ return 1 - self.llf/self.llnull @cache_readonly def llr(self): """ Likelihood ratio chi-squared statistic; `-2*(llnull - llf)` """ return -2*(self.llnull - self.llf) @cache_readonly def llr_pvalue(self): """ The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom `df_model`. """ return stats.distributions.chi2.sf(self.llr, self.df_model) def set_null_options(self, llnull=None, attach_results=True, **kwargs): """ Set the fit options for the Null (constant-only) model. This resets the cache for related attributes which is potentially fragile. This only sets the option, the null model is estimated when llnull is accessed, if llnull is not yet in cache. Parameters ---------- llnull : {None, float} If llnull is not None, then the value will be directly assigned to the cached attribute "llnull". attach_results : bool Sets an internal flag whether the results instance of the null model should be attached. By default without calling this method, thenull model results are not attached and only the loglikelihood value llnull is stored. **kwargs Additional keyword arguments used as fit keyword arguments for the null model. The override and model default values. Notes ----- Modifies attributes of this instance, and so has no return. """ # reset cache, note we need to add here anything that depends on # llnullor the null model. If something is missing, then the attribute # might be incorrect. self._cache.pop('llnull', None) self._cache.pop('llr', None) self._cache.pop('llr_pvalue', None) self._cache.pop('prsquared', None) if hasattr(self, 'res_null'): del self.res_null if llnull is not None: self._cache['llnull'] = llnull self._attach_nullmodel = attach_results self._optim_kwds_null = kwargs @cache_readonly def llnull(self): """ Value of the constant-only loglikelihood """ model = self.model kwds = model._get_init_kwds().copy() for key in getattr(model, '_null_drop_keys', []): del kwds[key] # TODO: what parameters to pass to fit? mod_null = model.__class__(model.endog, np.ones(self.nobs), **kwds) # TODO: consider catching and warning on convergence failure? # in the meantime, try hard to converge. see # TestPoissonConstrained1a.test_smoke optim_kwds = getattr(self, '_optim_kwds_null', {}).copy() if 'start_params' in optim_kwds: # user provided sp_null = optim_kwds.pop('start_params') elif hasattr(model, '_get_start_params_null'): # get moment estimates if available sp_null = model._get_start_params_null() else: sp_null = None opt_kwds = dict(method='bfgs', warn_convergence=False, maxiter=10000, disp=0) opt_kwds.update(optim_kwds) if optim_kwds: res_null = mod_null.fit(start_params=sp_null, **opt_kwds) else: # this should be a reasonably method case across versions res_null = mod_null.fit(start_params=sp_null, method='nm', warn_convergence=False, maxiter=10000, disp=0) res_null = mod_null.fit(start_params=res_null.params, method='bfgs', warn_convergence=False, maxiter=10000, disp=0) if getattr(self, '_attach_nullmodel', False) is not False: self.res_null = res_null return res_null.llf @cache_readonly def fittedvalues(self): """ Linear predictor XB. """ return np.dot(self.model.exog, self.params[:self.model.exog.shape[1]]) @cache_readonly def resid_response(self): """ Respnose residuals. The response residuals are defined as `endog - fittedvalues` """ return self.model.endog - self.predict() @cache_readonly def aic(self): """ Akaike information criterion. `-2*(llf - p)` where `p` is the number of regressors including the intercept. """ return -2*(self.llf - (self.df_model+1)) @cache_readonly def bic(self): """ Bayesian information criterion. `-2*llf + ln(nobs)*p` where `p` is the number of regressors including the intercept. """ return -2*self.llf + np.log(self.nobs)*(self.df_model+1) def _get_endog_name(self, yname, yname_list): if yname is None: yname = self.model.endog_names if yname_list is None: yname_list = self.model.endog_names return yname, yname_list def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available from the returned object. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. For interpretations of these methods see notes below. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- DiscreteMargins : marginal effects instance Returns an object that holds the marginal effects, standard errors, confidence intervals, etc. See `statsmodels.discrete.discrete_margins.DiscreteMargins` for more information. Notes ----- Interpretations of methods: - 'dydx' - change in `endog` for a change in `exog`. - 'eyex' - proportional change in `endog` for a proportional change in `exog`. - 'dyex' - change in `endog` for a proportional change in `exog`. - 'eydx' - proportional change in `endog` for a change in `exog`. When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. """ from statsmodels.discrete.discrete_margins import DiscreteMargins return DiscreteMargins(self, (at, method, atexog, dummy, count)) def summary(self, yname=None, xname=None, title=None, alpha=.05, yname_list=None): """ Summarize the Regression Results. Parameters ---------- yname : str, optional The name of the endog variable in the tables. The default is `y`. xname : list[str], optional The names for the exogenous variables, default is "var_xx". Must match the number of parameters in the model. title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. Returns ------- Summary Class that holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : Class that hold summary results. """ top_left = [('Dep. Variable:', None), ('Model:', [self.model.__class__.__name__]), ('Method:', ['MLE']), ('Date:', None), ('Time:', None), ('converged:', ["%s" % self.mle_retvals['converged']]), ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Pseudo R-squ.:', ["%#6.4g" % self.prsquared]), ('Log-Likelihood:', None), ('LL-Null:', ["%#8.5g" % self.llnull]), ('LLR p-value:', ["%#6.4g" % self.llr_pvalue]) ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" # boiler plate from statsmodels.iolib.summary import Summary smry = Summary() yname, yname_list = self._get_endog_name(yname, yname_list) # for top of table smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) # for parameters, etc smry.add_table_params(self, yname=yname_list, xname=xname, alpha=alpha, use_t=self.use_t) if hasattr(self, 'constraints'): smry.add_extra_txt(['Model has been estimated subject to linear ' 'equality constraints.']) return smry def summary2(self, yname=None, xname=None, title=None, alpha=.05, float_format="%.4f"): """ Experimental function to summarize regression results. Parameters ---------- yname : str Name of the dependent variable (optional). xname : list[str], optional List of strings of length equal to the number of parameters Names of the independent variables (optional). title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. float_format : str The print format for floats in parameters summary. Returns ------- Summary Instance that contains the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : Class that holds summary results. """ from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) if hasattr(self, 'constraints'): smry.add_text('Model has been estimated subject to linear ' 'equality constraints.') return smry
[docs]class CountResults(DiscreteResults): __doc__ = _discrete_results_docs % { "one_line_description": "A results class for count data", "extra_attr": ""} @cache_readonly def resid(self): """ Residuals Notes ----- The residuals for Count models are defined as .. math:: y - p where :math:`p = \\exp(X\\beta)`. Any exposure and offset variables are also handled. """ return self.model.endog - self.predict()
[docs]class NegativeBinomialResults(CountResults): __doc__ = _discrete_results_docs % { "one_line_description": "A results class for NegativeBinomial 1 and 2", "extra_attr": ""} @cache_readonly def lnalpha(self): """Natural log of alpha""" return np.log(self.params[-1]) @cache_readonly def lnalpha_std_err(self): """Natural log of standardized error""" return self.bse[-1] / self.params[-1] @cache_readonly def aic(self): # + 1 because we estimate alpha k_extra = getattr(self.model, 'k_extra', 0) return -2*(self.llf - (self.df_model + self.k_constant + k_extra)) @cache_readonly def bic(self): # + 1 because we estimate alpha k_extra = getattr(self.model, 'k_extra', 0) return -2*self.llf + np.log(self.nobs)*(self.df_model + self.k_constant + k_extra)
[docs]class GeneralizedPoissonResults(NegativeBinomialResults): __doc__ = _discrete_results_docs % { "one_line_description": "A results class for Generalized Poisson", "extra_attr": ""} @cache_readonly def _dispersion_factor(self): p = getattr(self.model, 'parameterization', 0) mu = self.predict() return (1 + self.params[-1] * mu**p)**2
class L1CountResults(DiscreteResults): __doc__ = _discrete_results_docs % {"one_line_description" : "A results class for count data fit by l1 regularization", "extra_attr" : _l1_results_attr} def __init__(self, model, cntfit): super(L1CountResults, self).__init__(model, cntfit) # self.trimmed is a boolean array with T/F telling whether or not that # entry in params has been set zero'd out. self.trimmed = cntfit.mle_retvals['trimmed'] self.nnz_params = (~self.trimmed).sum() # Set degrees of freedom. In doing so, # adjust for extra parameter in NegativeBinomial nb1 and nb2 # extra parameter is not included in df_model k_extra = getattr(self.model, 'k_extra', 0) self.df_model = self.nnz_params - 1 - k_extra self.df_resid = float(self.model.endog.shape[0] - self.nnz_params) + k_extra class PoissonResults(CountResults): def predict_prob(self, n=None, exog=None, exposure=None, offset=None, transform=True): """ Return predicted probability of each count level for each observation Parameters ---------- n : array_like or int The counts for which you want the probabilities. If n is None then the probabilities for each count from 0 to max(y) are given. Returns ------- ndarray A nobs x n array where len(`n`) columns are indexed by the count n. If n is None, then column 0 is the probability that each observation is 0, column 1 is the probability that each observation is 1, etc. """ if n is not None: counts = np.atleast_2d(n) else: counts = np.atleast_2d(np.arange(0, np.max(self.model.endog)+1)) mu = self.predict(exog=exog, exposure=exposure, offset=offset, transform=transform, linear=False)[:,None] # uses broadcasting return stats.poisson.pmf(counts, mu) @property def resid_pearson(self): """ Pearson residuals Notes ----- Pearson residuals are defined to be .. math:: r_j = \\frac{(y - M_jp_j)}{\\sqrt{M_jp_j(1-p_j)}} where :math:`p_j=cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1. """ # Pearson residuals p = self.predict() # fittedvalues is still linear return (self.model.endog - p)/np.sqrt(p) class L1PoissonResults(L1CountResults, PoissonResults): pass class L1NegativeBinomialResults(L1CountResults, NegativeBinomialResults): pass class L1GeneralizedPoissonResults(L1CountResults, GeneralizedPoissonResults): pass class OrderedResults(DiscreteResults): __doc__ = _discrete_results_docs % {"one_line_description" : "A results class for ordered discrete data." , "extra_attr" : ""} pass
[docs]class BinaryResults(DiscreteResults): __doc__ = _discrete_results_docs % {"one_line_description" : "A results class for binary data", "extra_attr" : ""}
[docs] def pred_table(self, threshold=.5): """ Prediction table Parameters ---------- threshold : scalar Number between 0 and 1. Threshold above which a prediction is considered 1 and below which a prediction is considered 0. Notes ----- pred_table[i,j] refers to the number of times "i" was observed and the model predicted "j". Correct predictions are along the diagonal. """ model = self.model actual = model.endog pred = np.array(self.predict() > threshold, dtype=float) bins = np.array([0, 0.5, 1]) return np.histogram2d(actual, pred, bins=bins)[0]
[docs] @Appender(DiscreteResults.summary.__doc__) def summary(self, yname=None, xname=None, title=None, alpha=.05, yname_list=None): smry = super(BinaryResults, self).summary(yname, xname, title, alpha, yname_list) fittedvalues = self.model.cdf(self.fittedvalues) absprederror = np.abs(self.model.endog - fittedvalues) predclose_sum = (absprederror < 1e-4).sum() predclose_frac = predclose_sum / len(fittedvalues) # add warnings/notes etext = [] if predclose_sum == len(fittedvalues): # TODO: nobs? wstr = "Complete Separation: The results show that there is" wstr += "complete separation.\n" wstr += "In this case the Maximum Likelihood Estimator does " wstr += "not exist and the parameters\n" wstr += "are not identified." etext.append(wstr) elif predclose_frac > 0.1: # TODO: get better diagnosis wstr = "Possibly complete quasi-separation: A fraction " wstr += "%4.2f of observations can be\n" % predclose_frac wstr += "perfectly predicted. This might indicate that there " wstr += "is complete\nquasi-separation. In this case some " wstr += "parameters will not be identified." etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry
@cache_readonly def resid_dev(self): """ Deviance residuals Notes ----- Deviance residuals are defined .. math:: d_j = \\pm\\left(2\\left[Y_j\\ln\\left(\\frac{Y_j}{M_jp_j}\\right) + (M_j - Y_j\\ln\\left(\\frac{M_j-Y_j}{M_j(1-p_j)} \\right) \\right] \\right)^{1/2} where :math:`p_j = cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1. """ #These are the deviance residuals #model = self.model endog = self.model.endog #exog = model.exog # M = # of individuals that share a covariate pattern # so M[i] = 2 for i = two share a covariate pattern M = 1 p = self.predict() #Y_0 = np.where(exog == 0) #Y_M = np.where(exog == M) #NOTE: Common covariate patterns are not yet handled res = -(1-endog)*np.sqrt(2*M*np.abs(np.log(1-p))) + \ endog*np.sqrt(2*M*np.abs(np.log(p))) return res @cache_readonly def resid_pearson(self): """ Pearson residuals Notes ----- Pearson residuals are defined to be .. math:: r_j = \\frac{(y - M_jp_j)}{\\sqrt{M_jp_j(1-p_j)}} where :math:`p_j=cdf(X\\beta)` and :math:`M_j` is the total number of observations sharing the covariate pattern :math:`j`. For now :math:`M_j` is always set to 1. """ # Pearson residuals #model = self.model endog = self.model.endog #exog = model.exog # M = # of individuals that share a covariate pattern # so M[i] = 2 for i = two share a covariate pattern # use unique row pattern? M = 1 p = self.predict() return (endog - M*p)/np.sqrt(M*p*(1-p)) @cache_readonly def resid_response(self): """ The response residuals Notes ----- Response residuals are defined to be .. math:: y - p where :math:`p=cdf(X\\beta)`. """ return self.model.endog - self.predict()
[docs]class LogitResults(BinaryResults): __doc__ = _discrete_results_docs % { "one_line_description": "A results class for Logit Model", "extra_attr": ""} @cache_readonly def resid_generalized(self): """ Generalized residuals Notes ----- The generalized residuals for the Logit model are defined .. math:: y - p where :math:`p=cdf(X\\beta)`. This is the same as the `resid_response` for the Logit model. """ # Generalized residuals return self.model.endog - self.predict()
[docs]class ProbitResults(BinaryResults): __doc__ = _discrete_results_docs % { "one_line_description": "A results class for Probit Model", "extra_attr": ""} @cache_readonly def resid_generalized(self): """ Generalized residuals Notes ----- The generalized residuals for the Probit model are defined .. math:: y\\frac{\\phi(X\\beta)}{\\Phi(X\\beta)}-(1-y)\\frac{\\phi(X\\beta)}{1-\\Phi(X\\beta)} """ # generalized residuals model = self.model endog = model.endog XB = self.predict(linear=True) pdf = model.pdf(XB) cdf = model.cdf(XB) return endog * pdf/cdf - (1-endog)*pdf/(1-cdf)
class L1BinaryResults(BinaryResults): __doc__ = _discrete_results_docs % {"one_line_description" : "Results instance for binary data fit by l1 regularization", "extra_attr" : _l1_results_attr} def __init__(self, model, bnryfit): super(L1BinaryResults, self).__init__(model, bnryfit) # self.trimmed is a boolean array with T/F telling whether or not that # entry in params has been set zero'd out. self.trimmed = bnryfit.mle_retvals['trimmed'] self.nnz_params = (~self.trimmed).sum() self.df_model = self.nnz_params - 1 self.df_resid = float(self.model.endog.shape[0] - self.nnz_params)
[docs]class MultinomialResults(DiscreteResults): __doc__ = _discrete_results_docs % {"one_line_description" : "A results class for multinomial data", "extra_attr" : ""} def __init__(self, model, mlefit): super(MultinomialResults, self).__init__(model, mlefit) self.J = model.J self.K = model.K @staticmethod def _maybe_convert_ynames_int(ynames): # see if they're integers issue_warning = False msg = ('endog contains values are that not int-like. Uses string ' 'representation of value. Use integer-valued endog to ' 'suppress this warning.') for i in ynames: try: if ynames[i] % 1 == 0: ynames[i] = str(int(ynames[i])) else: issue_warning = True ynames[i] = str(ynames[i]) except TypeError: ynames[i] = str(ynames[i]) if issue_warning: import warnings warnings.warn(msg, SpecificationWarning) return ynames def _get_endog_name(self, yname, yname_list, all=False): """ If all is False, the first variable name is dropped """ model = self.model if yname is None: yname = model.endog_names if yname_list is None: ynames = model._ynames_map ynames = self._maybe_convert_ynames_int(ynames) # use range below to ensure sortedness ynames = [ynames[key] for key in range(int(model.J))] ynames = ['='.join([yname, name]) for name in ynames] if not all: yname_list = ynames[1:] # assumes first variable is dropped else: yname_list = ynames return yname, yname_list
[docs] def pred_table(self): """ Returns the J x J prediction table. Notes ----- pred_table[i,j] refers to the number of times "i" was observed and the model predicted "j". Correct predictions are along the diagonal. """ ju = self.model.J - 1 # highest index # these are the actual, predicted indices #idx = lzip(self.model.endog, self.predict().argmax(1)) bins = np.concatenate(([0], np.linspace(0.5, ju - 0.5, ju), [ju])) return np.histogram2d(self.model.endog, self.predict().argmax(1), bins=bins)[0]
@cache_readonly def bse(self): bse = np.sqrt(np.diag(self.cov_params())) return bse.reshape(self.params.shape, order='F') @cache_readonly def aic(self): return -2*(self.llf - (self.df_model+self.model.J-1)) @cache_readonly def bic(self): return -2*self.llf + np.log(self.nobs)*(self.df_model+self.model.J-1)
[docs] def conf_int(self, alpha=.05, cols=None): confint = super(DiscreteResults, self).conf_int(alpha=alpha, cols=cols) return confint.transpose(2,0,1)
[docs] def margeff(self): raise NotImplementedError("Use get_margeff instead")
@cache_readonly def resid_misclassified(self): """ Residuals indicating which observations are misclassified. Notes ----- The residuals for the multinomial model are defined as .. math:: argmax(y_i) \\neq argmax(p_i) where :math:`argmax(y_i)` is the index of the category for the endogenous variable and :math:`argmax(p_i)` is the index of the predicted probabilities for each category. That is, the residual is a binary indicator that is 0 if the category with the highest predicted probability is the same as that of the observed variable and 1 otherwise. """ # it's 0 or 1 - 0 for correct prediction and 1 for a missed one return (self.model.wendog.argmax(1) != self.predict().argmax(1)).astype(float)
[docs] def summary2(self, alpha=0.05, float_format="%.4f"): """Experimental function to summarize regression results Parameters ---------- alpha : float significance level for the confidence intervals float_format : str print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : class to hold summary results """ from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_dict(summary2.summary_model(self)) # One data frame per value of endog eqn = self.params.shape[1] confint = self.conf_int(alpha) for i in range(eqn): coefs = summary2.summary_params((self, self.params[:, i], self.bse[:, i], self.tvalues[:, i], self.pvalues[:, i], confint[i]), alpha=alpha) # Header must show value of endog level_str = self.model.endog_names + ' = ' + str(i) coefs[level_str] = coefs.index coefs = coefs.iloc[:, [-1, 0, 1, 2, 3, 4, 5]] smry.add_df(coefs, index=False, header=True, float_format=float_format) smry.add_title(results=self) return smry
class L1MultinomialResults(MultinomialResults): __doc__ = _discrete_results_docs % {"one_line_description" : "A results class for multinomial data fit by l1 regularization", "extra_attr" : _l1_results_attr} def __init__(self, model, mlefit): super(L1MultinomialResults, self).__init__(model, mlefit) # self.trimmed is a boolean array with T/F telling whether or not that # entry in params has been set zero'd out. self.trimmed = mlefit.mle_retvals['trimmed'] self.nnz_params = (~self.trimmed).sum() # Note: J-1 constants self.df_model = self.nnz_params - (self.model.J - 1) self.df_resid = float(self.model.endog.shape[0] - self.nnz_params) #### Results Wrappers #### class OrderedResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(OrderedResultsWrapper, OrderedResults) class CountResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(CountResultsWrapper, CountResults) class NegativeBinomialResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(NegativeBinomialResultsWrapper, NegativeBinomialResults) class GeneralizedPoissonResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(GeneralizedPoissonResultsWrapper, GeneralizedPoissonResults) class PoissonResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(PoissonResultsWrapper, PoissonResults) class L1CountResultsWrapper(lm.RegressionResultsWrapper): pass class L1PoissonResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(L1PoissonResultsWrapper, L1PoissonResults) class L1NegativeBinomialResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(L1NegativeBinomialResultsWrapper, L1NegativeBinomialResults) class L1GeneralizedPoissonResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(L1GeneralizedPoissonResultsWrapper, L1GeneralizedPoissonResults) class BinaryResultsWrapper(lm.RegressionResultsWrapper): _attrs = {"resid_dev": "rows", "resid_generalized": "rows", "resid_pearson": "rows", "resid_response": "rows" } _wrap_attrs = wrap.union_dicts(lm.RegressionResultsWrapper._wrap_attrs, _attrs) wrap.populate_wrapper(BinaryResultsWrapper, BinaryResults) class L1BinaryResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(L1BinaryResultsWrapper, L1BinaryResults) class MultinomialResultsWrapper(lm.RegressionResultsWrapper): _attrs = {"resid_misclassified": "rows"} _wrap_attrs = wrap.union_dicts(lm.RegressionResultsWrapper._wrap_attrs, _attrs) _methods = {'conf_int': 'multivariate_confint'} _wrap_methods = wrap.union_dicts(lm.RegressionResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(MultinomialResultsWrapper, MultinomialResults) class L1MultinomialResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(L1MultinomialResultsWrapper, L1MultinomialResults)