statsmodels.discrete.discrete_model.CountModel¶
-
class
statsmodels.discrete.discrete_model.CountModel(endog, exog, offset=None, exposure=None, missing='none', **kwargs)[source]¶ Methods
cdf(X)The cumulative distribution function of the model.
cov_params_func_l1(likelihood_model, xopt, …)Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit.
fit([start_params, method, maxiter, …])Fit the model using maximum likelihood.
fit_regularized([start_params, method, …])Fit the model using a regularized maximum likelihood.
from_formula(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe.
hessian(params)The Hessian matrix of the model.
information(params)Fisher information matrix of model.
Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model.
loglike(params)Log-likelihood of model.
pdf(X)The probability density (mass) function of the model.
predict(params[, exog, exposure, offset, linear])Predict response variable of a count model given exogenous variables
score(params)Score vector of model.
Properties
Names of endogenous variables.
Names of exogenous variables.